Arbeitsgruppe
Wolken und globales Klima

Do you speak english? → Click here!


Die Arbeitsgruppe "Wolke und globales Klima" benutzt und analysiert globale Klimamodelle und Satellitenbeobachtungen, um Wolken-Klima-Wechselwirkungen und die Effekte anthropogener Aerosole auf Wolken und damit auf das Klima besser zu verstehen.

Team


Zur Einwahl von außerhalb der Universität ist (0341) 97- vorzuwählen. Die Adresse ist Vor dem Hospitaltore 1 (1. Etage), D-04103 Leipzig Internes Postfach 232112; Faxnummer: (0341) 97-31949

Wissenschaftliche Mitarbeiter/Innen


Name Raum Telefon E-Mail
 
Block, Karoline Doktorandin 116r 32939 E-Mail, WWW
 
Cherian, Dr. Ribu Wissenschaftler 119r 32933 E-Mail, WWW
 
Goren, Dr. Tom Wissenschaftler 118r 32936 E-Mail, WWW
 
Kretzschmar, Jan Doktorand 115r 32941 E-Mail, WWW
 
Mülmenstädt, Dr. Johannes Wissenschaftler 117r 32937 E-Mail, WWW
 
Nam, Dr. Christine Wissenschaftlerin 118r 32935 E-Mail, WWW
 
Quaas, Prof. Johannes Professor 121r 32931, 32852 E-Mail, WWW
 
Salzmann, Dr. Marc Akademischer Rat 120r 32932 E-Mail, WWW
 
Sourdeval, Dr. Odran Wissenschaftler 117r 32938 E-Mail, WWW
 
Sudhakar, Dr. Dipu Wissenschaftler 119r 32934 E-Mail, WWW
 
Unglaub, Claudia Doktorandin 116r 32940 E-Mail, WWW

Studenten/Innen


Name Raum Telefon E-Mail
 
Hörnig, Sabine Studentische Hilfskraft   113r 32944  
 
Jungandreas, Leonore Studentische Hilfskraft   113r 32944  
 
Böhm, Christoph Masterstudent   113r 32944  
 
Strehl, Pit Masterstudent   113r 32944  
 
Hermes, Kilian Bachelorstudent   113r 32944  
 
Metzner, Enrico Bachelorstudent   113r 32944  
 
Sattig, Gabriel Bachelorstudent   113r 32944  

Alumni


Name Neue Stelle
 
Brueck, Matthias Max-Planck-Institut für Meteorologie
 
Gryspeerdt, Edward Imperial College London
 
Aswathy Nair Maternity leave, India


Publications


Brueck, M., J. Quaas, J.-C. Golaz, and H. Guo, Importance of subgrid temperature variability in cloud parameterizations, Mon. Wea. Rev., in revision.

Cherian, R., J. Quaas, M. Salzmann, and L. Tomassini, Black carbon indirect radiative effects in a climate model, Tellus, submitted.

Dipu S., , J. Quaas, R. Wolke, J. Stoll, A. Muhlbauer, M. Salzmann, B. Heinold, and Ina Tegen, Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT and evaluation using satellite data, Geosci. Model Devel. Discuss., in revision, doi:10.5194/gmd-2016-186.

Kretzschmar, Jan, M. Salzmann, J. Mülmenstädt, O. Boucher, and J. Quaas, Comment on ``Rethinking the lower bound on aerosol radiative forcing'', J. Climate, in review.

Schemann, V., and J. Quaas, Improving the representation of subgrid-scale variability of total water in GCMs., J. Adv. Model. Earth Syst., in revision.

White, Bethan, Edward Gryspeerdt, P. Stier, Hugh Morisson, and Gregory Thompson, Can models robustly represent aerosolâ, Atmos.Chem. Phys. Discuss, submitted, doi:10.5194/acp-2016-760.

68. Gryspeerdt, Edward, J. Quaas, S. Ferrachat, A. Gettelman, S. Ghan, U. Lohmann, H. Morrison, D. Neubauer, D. G. Partridge, P. Stier, T. Takemura, Hailong Wang, M. Wang, and K. Zhang, Constraining the instantaneous aerosol influence on cloud albedo, Proc. Nat. Acad. Sci. USA, in press, doi:10.1073/pnas.1617765114, 2017.

67. Heinze, R., A. Dipankar, C. Carbajal Henken, C. Moseley, O. Sourdeval, S. Trömel, X. Xie, P. Adamidis, F. Ament, H. Baars, C. Barthlott, A. Behrendt, U. Blahak, S. Bley, Slavko Brdar, M. Brueck, Susanne Crewell, H. Deneke, P. Di Girolamo, R. Evaristo, J. Fischer, C. Frank, P. Friederichs, T. Göcke, K. Gorges, L. Hande, M. Hanke, A. Hansen, H.-C. Hege, C. Hoose, T. Jahns, N. Kalthoff, D. Klocke, S. Kneifel, P. Knippertz, A. Kuhn, T. Laar, Andreas Macke, V. Maurer, B. Mayer, C. I. Meyer, S. K. Muppa, R. A. J. Neggers, E. Orlandi, F. Pantillon, B. Pospichal, N. Röber, L. Scheck, A. Seifert, P. Seifert, F. Senf, P. Siligam, C. Simmer, S. Steinke, B. Stevens, K. Wapler, M. Weniger, V. Wulfmeyer, G. Zängl, D. Zhang, and J. Quaas, Large-eddy simulations over Germany using ICON: A comprehensive evaluation, Quart. J. Roy. Meteorol. Soc., 143, 69-100, doi:10.1002/qj.2947, 2017.

66. Heyn, I., K. Block, J. Mülmenstädt, Edward Gryspeerdt, P. Kühne, M. Salzmann, and J. Quaas, Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum, Geophys. Res. Lett., 44, 1001-1007, doi:10.1002/2016GL071975, 2017.

65. Heyn, I., M. Salzmann, J. Quaas, and J. Mülmenstädt, Effects of diabatic and adiabatic processes on relative humidity in a GCM, and relationship between mid-tropospheric vertical wind and cloud-forming and cloud-dissipating processes, Tellus, 69, 1272753, doi:10.1080/16000870.2016.1272753, 2017.

64. Myhre, G., W. Aas, R. Cherian, W. Collins, G. Faluvegi, M. Flanner, P. Forster, Ø. Hodnebrog, Z. Klimont, J. Mülmenstädt, C. Lund Myhre, D. Olivié, M. Prather, J. Quaas, B. H. Samset, J. L. Schnell, M. Schulz, D. Shindell, R. B. Skeie, T. Takemura, and S Tsyro, Multi-model simulations of aerosol and ozone radiative forcing for the period 1990-2015, Atmos. Chem. Phys., 17, 2709-2720, doi:10.5194/acp-17-2709-2017, 2017.

63. Patel, P., J. Quaas, and R. Kumar, A new statistical approach to improve the satellite based estimation of the radiative forcing by aerosol- cloud interactions, Atmos. Chem. Phys., 17, 3687-3698, doi:10.5194/acp-17-3687-2017, 2017.

62. Quaas, M. F., J. Quaas, W. Rickels, and O. Boucher, Are there good reasons against research into solar radiation management? - A model of intergenerational decision-making under uncertainty, J. Environ. Econ. Manage., 84, 1-17, doi:10.1016/j.jeem.2017.02.002, 2017.

61. Salzmann, M., The polar amplification asymmetry: Role of antarctic surface height, Earth Syst. Dynam., 8, 323--336, doi:doi:10.5194/esd-8-323-2017, 2017.

60. Wendisch, Manfred, Marlen Brückner, John Burrows, Susanne Crewell, Klaus Dethloff, Kerstin Ebell, Christof Lüpkes, Andreas Macke, Justus Notholt, J. Quaas, Annette Rinke, and Ina Tegen, The Arctic Amplifier - Novel Science Planned in a New German Research Initiative, EOS, 98, doi:10.1029/2017EO064803, 2017.

59. Baraskar, A., M. Bhushan, C. Venkataraman, and R. Cherian, An offline constrained data assimilation technique for aerosols: Improving GCM simulations over South Asia using observations from two satellite sensors, Atmos. Environ., 132, 36 - 48, doi:10.1016/j.atmosenv.2016.02.026, 2016.

58. Bellouin, N., L. Baker, Ø. Hodnebrog, D. Olivié, R. Cherian, C. Macintosh, B. Samset, A. Esteve, B. Aamaas, J. Quaas, and G. Myhre, Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions, Atmos. Chem. Phys., 16, 13885-13910, doi:10.5194/acp-16-13885-2016, 2016.

57. Boucher, O., Y. Balkanski, Ø. Hodnebrog, C. Lund Myhre, G. Myhre, J. Quaas, B. H. Samset, N Schutgens, P. Stier, and R. Wang, The jury is still out on the radiative forcing by black carbon, Proc. Nat. Acad. Sci. USA, 113, E5092-E5093, doi:10.1073/pnas.1607005113, 2016.

56. Gross, A, B. L. Turner, Tom Goren, A. Berry, and A Angert, Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes, Environ. Sci. Technol., 50, 1147-1156, doi:10.1021/acs.est.5b04936, 2016.

55. Gryspeerdt, Edward, J. Quaas, and N. Bellouin, Constraining the aerosol influence on cloud fraction, J. Geophys. Res., 121, 3566-3583, doi:10.1002/2015JD023744, 2016.

54. Kedia, S., R. Cherian, S. Islam, S. K. Das, and A. Kaginalkar, Regional simulation of aerosol radiative effects and their influence on rainfall over India using WRFChem model, Atmos. Res., 182, 232 - 242, doi:10.1016/j.atmosres.2016.07.008, 2016.

53. Quaas, J., M. F. Quaas, O. Boucher, and W. Rickels, Regional climate engineering by radiation management: Prerequisites and prospects, Earth's Future, 4, 618-625, doi:10.1002/2016EF000440, 2016.

52. Quennehen, B., J.-C. Raut, K. S. Law, N. Daskalakis, G. Ancellet, C. Clerbaux, S.-W. Kim, M. T. Lund, G. Myhre, D. J. L. Olivié, S. Safieddine, R. B. Skeie, J. L. Thomas, S Tsyro, A. Bazureau, N. Bellouin, M. Hu, M. Kanakidou, Z. Klimont, K. Kupiainen, S. Myriokefalitakis, J. Quaas, S. T. Rumbold, M. Schulz, R. Cherian, A. Shimizu, J. Wang, S.-C. Yoon, and T. Zhu, Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008, Atmos. Chem. Phys. , 16, 10765-10792, doi:10.5194/acp-16-10765-2016, 2016.

51. Sadavarte, P., C. Venkataraman, R. Cherian, N. Patil, B.L. Madhavan, T. Gupta, S. Kulkarni, G. R. Carmichael, and B. Adhikary, Seasonal differences in aerosol abundance and radiative forcing in months of contrasting emissions and rainfall over northern South Asia, Atmos. Environ., 125, Part B, 512 - 523, doi:10.1016/j.atmosenv.2015.10.092, 2016.

50. Salzmann, M., Global warming without global mean precipitation increase?, Sci. Adv., 2, e1501572, doi:10.1126/sciadv.1501572, 2016.

49. Schutgens, N, Edward Gryspeerdt, N. Weigum, S Tsyro, D Goto, M. Schulz, and P. Stier, Will a perfect model agree with perfect observations? The impact of spatial sampling., Atmos. Chem. Phys., doi:10.5194/acp-16-6335-2016, 2016.

48. Sourdeval, O., L.-C. Labonnote, A. J. Baran, J. Mülmenstädt, and G. Brogniez, A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part 2: Near-global retrievals and evaluation against A-Train products, Q. J. R. Meteorol. Soc., 142, 3063-3081, doi:10.1002/qj.2889, 2016.

47. Watson-Parris, D, N Schutgens, N Cook, Z Kipling, P Kerhsaw, Edward Gryspeerdt, B Lawrence, and P. Stier, Community Intercomparison Suite (CIS) v1.4.0: A tool for intercomparing models and observations, Geosci. Model Dev., 9, doi:10.5194/gmd-9-3093-2016, 2016.

46. Aswathy, V. N., O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas, Climate extremes in multi-model simulations of stratospheric aerosol- and marine cloud brightening climate engineering, Atmos. Chem. Phys., 15, 9593-9610, doi:10.5194/acp-15-9593-2015, 2015.

45. Baker, L. H., W. J. Collins, D. J. L. Olivié, R. Cherian, Ø. Hodnebrog, G. Myhre, and J. Quaas, Climate responses to anthropogenic emissions of short-lived climate pollutants, Atmos. Chem. Phys., 15, 8201-8216, doi:10.5194/acp-15-8201-2015, 2015.

44. Eckhardt, S., B. Quennehen, D. J. L. Olivié, T. K. Berntsen, R. Cherian, J.H. Christensen, W. Collins, S. Crepinsek, N. Daskalakis, M. Flanner, A. Herber, C. Heyes, Ø. Hodnebrog, L. Huang, M. Kanakidou, Z. Klimont, J. Langner, K. S. Law, M. T. Lund, R. Mahmood, A. Massling, S. Myriokefalitakis, I.E. Nielsen, J.K. Nøjgaard, J. Quaas, P.K. Quinn, J.-C. Raut, S. T. Rumbold, M. Schulz, S. Sharma, R. B. Skeie, H. Skov, T. Uttal, K. Salzen, and A. Stohl, Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set, Atmos. Chem. Phys., 15, 9413-9433, doi:10.5194/acp-15-9413-2015, 2015.

43. Gryspeerdt, Edward, P. Stier, B. A. White, and Z Kipling, Wet scavenging limits the detection of aerosol effects on precipitation, Atmos. Chem. Phys., 15, 7557-7570, doi:10.5194/acp-15-7557-2015, 2015.

42. Mülmenstädt, J., O. Sourdeval, J. Delanoë, and J. Quaas, Frequency of occurrence of rain from liquid-, mixed- and ice-phase clouds derived from A-Train satellite retrievals, Geophys. Res. Lett., 42, 6502-6509, doi:10.1002/2015GL064604, 2015.

41. Quaas, J., Approaches to observe effects of anthropogenic aerosols on clouds and radiation, Current Climate Change Reports, 1, 297-304, doi:10.1007/s40641-015-0028-0, 2015.

40. Quaas, J., and P. Stier, Satellite observations of convection and their implications for parameterizations, Parameterization of Atmospheric Convection, Vol. 2: Current Issues and New Theories, World Scientific Publishing, ISBN 978-1-78326-690-6, 47-58, doi:10.1142/9781783266913_0019, 2015.

39. Rosch, J., T. Heus, H. M. Brueck, M. Salzmann, J. Mülmenstädt, L. Schlemmer, and J. Quaas, Analysis of diagnostic climate model cloud parameterisations using large-eddy simulations, Q. J. R. Meteorol. Soc., 141, 2199-2205, doi:10.1002/qj.2515, 2015.

38. Salzmann, M., and R. Cherian, On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the 20th century, J. Geophys. Res. Atmos., 120, 9103-9118, doi:10.1002/2015JD023313, 2015.

37. Stohl, A., B. Aamaas, M. Amann, L. H. Baker, N. Bellouin, T. K. Berntsen, O. Boucher, R. Cherian, W. Collins, N. Daskalakis, M. Dusinska, S. Eckhardt, J. S. Fuglestvedt, M. Harju, C. Heyes, Ø. Hodnebrog, J. Hao, U. Im, M. Kanakidou, Z. Klimont, K. Kupiainen, K. S. Law, M. T. Lund, R. Maas, C. R. MacIntosh, G. Myhre, S. Myriokefalitakis, D. J. Olivie, J. Quaas, B. Quennehen, J.-C. Raut, S. Rumbold, B. H. Samset, M. Schulz, Ø. Seland, K. P. Shine, R. B. Skeie, S. Wang, K. E. Yttri, and T. Zhu, Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants, Atmos. Chem. Phys., 15, 10529-10566, doi:10.5194/acp-15-10529-2015, 2015.

36. Cherian, R., J. Quaas, M. Salzmann, and M. Wild, Pollution trends over Europe constrain global aerosol forcing as simulated by climate models, Geophys. Res. Lett., 41, 2176-2181, doi:10.1002/2013GL058715, 2014.

35. Ma, X., F. Yu, and J. Quaas, Reassessment of satellite-based estimate of aerosol-climate forcing, J. Geophys. Res., 119, 10394-10409, doi:10.1002/2014JD021670, 2014.

34. Nam, C., J. Quaas, R. Neggers, C. Siegenthaler-Le Drian, and F. Isotta, Evaluation of boundary layer cloud parameterizations in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data, J. Adv. Model. Earth Syst., 6, 300-314, doi:10.1002/2013MS000277, 2014.

33. Peters, K., J. Quaas, P. Stier, and H. Graßl, Processes limiting the emergence of detectable aerosol indirect effects on tropical warm clouds in global aerosol-climate model and satellite data, Tellus B, 66, 24054, doi:10.3402/tellusb.v66.24054, 2014.

32. Rosenfeld, D., M. O. Andreae, A. Asmi, M. Chin, G. Leeuw, D. P. Donovan, R. Kahn, S. Kinne, N. Kivekäs, M. Kulmala, W. Lau, S. Schmidt, T. Suni, T. Wagner, M. Wild, and J. Quaas, Global observations of aerosol-cloud-precipitation-climate interactions, Reviews Geophys., 52, 750-808, doi:10.1002/2013RG000441, 2014.

31. Salzmann, M., H. Weser, and R. Cherian, Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models, J. Geophys. Res. Atmos., 119, 11321â, doi:10.1002/2014JD021783, 2014.

30. Sourdeval, O., L.-C. Labonnote, A. J. Baran, and G. Brogniez, A methodology for simultaneous retrieval of ice and liquid water cloud properties. I: Information content and case study, doi:10.1002/qj.2405, 2014.

29. Yano, J.-I., J.-F. Geleyn, M. Köhler, D. Mironov, J. Quaas, P. Soares, V. T. J. Phillips, R. S. Plant, A. Deluca, P. Marquet, L. Stulic, and Z. Fuchs, Basic concepts for convection parameterization in weather forecast and climate models: COST Action ES0905 final report, Atmosphere, 6, 88-147, doi:10.3390/atmos6010088, 2014.

28. Bellouin, N., J. Quaas, J.-J. Morcrette, and O. Boucher, Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13, 2045-2062, doi:10.5194/acp-13-2045-2013, 2013.

27. Block, K., and T. Mauritsen, Feedback and Forcing in the MPI-ESM-LR coupled model under abruptly quadrupled CO2, J. Adv. Model. Earth Syst., 5, doi:10.1002/jaime20041, 2013.

26. Boucher, O., and J. Quaas, Water vapour affects both rain and aerosol optical depth, Nature Geosci., 6, 4-5, doi:10.1038/ngeo1692, 2013.

25. Cherian, R., C. Venkataraman, J. Quaas, and S. Ramachandran, GCM simulations of aerosol extinction, heating and effects on precipitation over India, J. Geophys. Res., 118, 2938-2955, doi:10.1002/jgrd.50298, 2013.

24. Grützun, V., J. Quaas, F. Ament, and C. Morcrette, Evaluating statistical cloud schemes - what can we gain from ground based remote sensing?, J. Geophys. Res., 118, 10507-10517, doi:10.1002/jgrd.50813, 2013.

23. Klocke, D., J. Quaas, and B. Stevens, Assessment of different metrics for physical climate feedbacks, Clim. Dyn., 41, 1173-1185, doi:10.1007/s00382-013-1757-1, 2013.

22. Nam, C., and J. Quaas, Geographical versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterisations, Geophys. Res. Lett., 40, 4951-4956, doi:10.1002/grl.50945, 2013.

21. Randles, C. A., S. Kinne, G. Myhre, M. Schulz, P. Stier, J. Fischer, L. Doppler, E. Highwood, C. Ryder, B. Harris, J. Huttunen, Y. Ma, R. T. Pinker, B. Mayer, D. Neubauer, R. Hitzenberger, L. Oreopoulos, D. Lee, G. Pitari, G. Di Genova, J. Quaas, F. G. Rose, S. Kato, S. T. Rumbold, I. Vardavas, N. Hatzianastassiou, C. Matsoukas, H. Yu, H. Zhang, and P. Lu, Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment, Atmos. Chem. Phys., 13, 2347-2379, doi:10.5194/acp-13-2347-2013, 2013.

20. Rennó, N. O., E. Williams, D. Rosenfeld, D. G. Fischer, J. Fischer, T. Kremic, A. Agrawal, M. O. Andreae, R. Bierbaum, R. Blakeslee, A. Boerner, N. Bowles, H. Christian, A. Cox, J. Dunion, Á. Horváth, X. Huang, A. Khain, S. Kinne, M. C. Lemos, J. Penner, U. Pöschl, J. Quaas, E. Seran, B. Stevens, T. Walati, and T. Wagner, CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate, Bull. Amer. Meteor. Soc., 94, 685-694, doi:10.1175/BAMS-D-11-00239, 2013.

19. Schemann, V., B. Stevens, V. Grützun, and J. Quaas, Scale dependency of total water variance, and its implication for cloud parameterizations, J. Atmos. Sci., 70, 3615-3630, doi:10.1175/JAS-D-13-09.1, 2013.

18. Schirber, S., D. Klocke, R. Pincus, J. Quaas, and J. Anderson, Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect towards the real world, J. Adv. Model. Earth Syst., 5, 58-70, doi:10.1029/2012MS000167, 2013.

17. Schneider, N., J. Quaas, M. Claussen, and C. Reick, Satellite-based analysis of clouds and radiation properties of different vegetation types in the Brazilian Amazon region, AIP Conf. Proc. 1531, 428, doi:10.1063/1.4804798, 2013.

16. Stevens, B., M. Giorgetta, M. Esch, T. Mauritsen, T. Crueger, S. Rast, M. Salzmann, H. Schmidt, J. Bader, K. Block, R. Brokopf, I. Fast, S. Kinne, L. Kornblueh, U. Lohmann, R. Pincus, R. Reichler, and E. Roeckner, Atmospheric component of the MPI-M Earth System Model: ECHAM6, J. Adv. Model. Earth Syst., 5, 146-172, doi:10.1002/jame.20015, 2013.

15. Tomassini, L., O. Geoffroy, J.-L. Dufresne, A. Idelkadi, C. Cagnazzo, K. Block, T. Mauritsen, M. Giorgetta, and J. Quaas, The respective roles of surface temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 transient climate simulations, Clim. Dyn., 41, 3103-3126, doi:10.1007/s00382-013-1682-3, 2013.

14. Cherian, R., C. Venkataraman, S. Ramachandran, J. Quaas, and S. Kedia, Examination of aerosol distributions and radiative effects over the Bay of Bengal and the Arabian Sea region during ICARB using satellite data and a general circulation model, Atmos. Chem. Phys., 12, 1287-1305, doi:10.5194/acp-12-1287-2012, 2012.

13. Devasthale, A., K. Karlsson, J. Quaas, and H. Graßl, Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function, Atmos. Meas. Tech., 5, 267-273, doi:10.5194/amt-5-267-2012, 2012.

12. Gehlot, S., and J. Quaas, Convection-climate feedbacks in ECHAM5 general circulation model: A Lagrangian trajectory perspective of cirrus cloud life cycle, J. Clim., 25, 5241-5259, doi:10.1175/JCLI-D-11-00345.1, 2012.

11. Nam, C., and J. Quaas, Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat , J. Clim., 25, 4975-4992, doi:10.1175/JCLI-D-11-00347.1, 2012.

10. Peters, K., P. Stier, J. Quaas, and H. Graßl, Aerosol indirect effects from shipping emissions: Sensitivity studies with the global aerosol-climate model ECHAM-HAM, Atmos. Chem. Phys., 12, 5985-6007, doi:10.5194/acp-12-5985-2012, 2012.

9. Quaas, J., Evaluating the "critical relative humidity" as a measure of subgrid-scale variability of humidity in general circulation model cloud cover parameterizations using satellite data, J. Geophys. Res., 117, D09208, doi:10.1029/2012JD017495, 2012.

8. Sanchez-Lorenzo, A., P. Laux, H.-J. Hendricks-Franssen, A. K. Georgoulias, J. Calbó, S. Vogl, and J. Quaas, Assessing large-scale weekly cycles in meteorological variables: a review, Atmos. Chem. Phys., 12, 5755-5771, doi:10.5194/acp-12-5755-2012, 2012.

7. Weber, T., and J. Quaas, Incorporating the subgrid-scale variability of clouds in the autoconversion parameterization, J. Adv. Model. Earth Syst., 4, M11003, doi:10.1029/2012MS000156, 2012.

6. Zhang, K., D. O'Donnell, J. Kazil, P. Stier, S. Kinne, U. Lohmann, S. Ferrachat, B. Croft, J. Quaas, H. Wan, S. Rast, and J. Feichter, The global aerosol-climate model ECHAM5-HAM, version 2: sensitivity to improvements in process representations, Atmos. Chem. Phys., 12, 8911-8949, doi:10.5194/acp-12-8911-2012, 2012.

5. Zygmuntowska, M., T. Mauritsen, J. Quaas, and L. Kaleschke, Artcic clouds and surface radiation - a critical comparison of satellite retrievals and the ERA-INTERIM reanalysis, Atmos. Chem. Phys., 12, 6667-6677, doi:10.5194/acp-12-6667-2012, 2012.

4. Klocke, D., R. Pincus, and J. Quaas, On constraining estimates of climate sensitivity with present-day observations through model weighting, J. Clim., 24, 6092-6099, doi:10.1175/2011JCLI4193.1, 2011.

3. Peters, K., J. Quaas, and H. Graßl, A search for large-scale effects of ship emissions on clouds and radiation in satellite data, J. Geophys. Res., 116, D24205, doi:10.1029/2011JD016531, 2011.

2. Quaas, J., O. Boucher, N. Bellouin, and S. Kinne, Which of satellite- or model-based estimates is closer to reality for aerosol indirect forcing? - Reply to Penner et al., Proc. Nat. Acad. Sci. USA, 108, E1099, doi:10.1073/pnas.1114634108, 2011.

1. Weber, T., J. Quaas, and P. Räisänen, Evaluation of the subgrid-scale variability scheme for water vapor and cloud condensate in the ECHAM5 model using satellite data, Q. J. R. Meteorol. Soc., 137, 2079-2091, doi:10.1002/qj.887, 2011.

Projekte

ERC Starting Grant Quantifying Aerosol-Cloud-Climate Effects by Regime (QUAERERE)


Quantifizierung des Strahlungsantriebs durch den Effekt anthropogener Aerosole auf Wolken mit Hilfe von statistischen Analysen von Satellitendaten und mit Hilfe von Klimamodellierung

BMBF-Verbundprojekt High Definition Clouds and Climate for Advancing Climate Prediction (HD(CP)²) - zweite Phase (2016-2019)


Nutzung des hochaufgelösten ICON-Modells und der HD(CP)²-Beobachtungsdaten für die Untersuchung schneller Anpassungen von Wolken auf anthropogene Emissionen von Aerosol (Projekt S1) einerseits und von CO2 (Projekt S2) andererseits.
Wichtigste Partner: Max-Planck-Institut für Meteorologie, Hamburg; Institut für Geophysik und Meteorologie, Universität zu Köln; Institut für Weltraumwissenschaften, Freie Universität Berlin; Leibniz-Institut für Troposphärenforschung, Leipzig

ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms, (AC)³


Hauptbeiträge: Untersuchung des Strahlungsantriebs durch Aerosol-Wolken-Wechselwirkungen und seine Auswirkungen in der Arktis (Projekt D02), Analyse und Quantifizierung von Klimafeedbacks in der Arktis (Projekt E01).
Sonderforschungsbereich/Transregio an den Universitäten Leipzig, Köln und Bremen mit Alfred-Wegener-Institut (Bremerhaven und Potsdam) und Leibniz-Institut für Troposphärenforschung (Leipzig)

Forcing in the long-wave spectrum due to aerosol-cloud interactions: satellite and climate modelling vs. HALO, FLASH, DFG, SPP 1294 "HALO"


Evaluierung eines neuen satellitenbasierten Datensatzes für Eiskristallkonzentrationen mit Hilfe von HALO-Beobachtungen, Analyse der Wechselwirkung mit Aerosol.

Copernicus Atmospheric Monitoring Service 74 - Radiative Forcings, CAMS 74 , EU/ ECMWF.


Hauptbeitrag: Quantifizierung des Strahlungsantriebs durch Aerosol-Wolken-Wechselwirkungen auf Basis der CAMS-Reanalyse
Wichtigste Partner: University of Reading ; University of Leeds; CICERO Oslo; Max-Planck-Institut für Meteorologie Hamburg; Laboratoire de Météorologie Dynamique / CNRS Paris

EU FP7-Projekt Monitoring Atmospheric Composition and Climate - Interim Implementation (MACC-II)


Hauptbeitrag: Ermittlung des Strahlungsantriebs durch direkte und indirekte Aerosol-Effekte auf der Basis der assimilierten Aerosol-Verteilungen im IFS-Modell des EZMW.
Wichtigste Partner: ECMWF, Reading, Großbritannien; Universität Reading, UK; LMD/CNRS, Paris, Frankreich

EU FP7-Projekt Evaluating the CLimate and Air Quality ImPacts of Short-livEd Pollutants (ECLIPSE)


Hauptbeitrag: Analyse der Klimawirkung von Emissionsreduktionen für kurzlebige Verschmutzungen der Atmosphäre, speziell für Ruß, im Kontext des gekoppelten Klimasystems, sowie Evaluierung mit historischen Beobachtungen.
Wichtigste Partner: UK Met Office, Exeter, Großbritannien; Norwegian Institute for Air Research, Kjeller, Norwegen

COST Activity ES0905 Basic concepts for convection parameterization in weather forecast and climate models


Hauptbeitrag: Stellvertretender Vorsitzender, Leitung der Arbeitsgruppe 4 "Physics and Observations"

Learning about cloud brightening: When and how to do experiments (LEAC-I) , DFG-Schwerpunkt-programm 1689 Climate Engineering: Risks, Challenges, Opportunities?


Hauptbeitrag: Analyse von Satellitendaten und Modellergebnissen, um herauszufinden, wie groß in Raum und Zeit ein Feldexperiment sein müsste, um statistisch gesicherte Aussagen über die Wirksamkeit des Impfens von Wolken zur Milderung des Klimawandels zu erhalten.
Wichtigste Partner: Arbeitsgruppe für Umwelt-, Ressourcen- und ökologische Ökonomik der Christian-Albrechts-Universität zu Kiel

BMBF-Verbundprojekt High Definition Clouds and Climate for Advancing Climate Prediction (HD(CP)2-I)


Hauptbeitrag: Synchronisierung von Modell- und Beobachtungsdaten für die Beobachtungen von Messnetzen und Satelliten; Auswertung dieser Daten zur Evaluierung von Klimamodell-Parametrisierungen; Nutzung der HD(CP)2-Daten zur Evaluierung und Entwicklung von statistischen Wolkenschemata.
Wichtigste Partner: Max-Planck-Institut für Meteorologie, Hamburg; Institut für Geophysik und Meteorologie, Universität zu Köln; Meteorologisches Institut, Universität Bonn; Institut für Weltraumwissenschaften, Freie Universität Berlin; Leibniz-Institut für Troposphärenforschung, Leipzig

Abschlussarbeiten