Stefan Berger’s Home Page

logo_gr

 Fakultät für Chemie und Mineralogie
Institut für Analytische Chemie


    Address:

    D - 04103 Leipzig,  Linnéstr 3
    (Post: Johannisallee 29)

    Tel.:    +49 341- 97- 36101
    FAX :  +49 341- 97- 36115 

“200 and more NMR Experiments”

Contents / Name of Pulse Programs

Order@Wile y’s

Contents

Preface

Chapter 1  The NMR Spectrometer 

1.1 Components of an NMR Spectrometer   
1.1.1 The Magnet   
1.1.2 The Spectrometer Cabinet    
1.1.3 The Computer   
1.1.4 Maintenance    
1.2 Tuning a Probe-Head    
1.3 The Lock Channel    
1.4 The Art of Shimming    
1.4.1 The Shim Gradients    
1.4.2 The Shimming Procedure    
1.4.3 Gradient Shimming 


Chapter 2  Determination of Pulse-Duration

Exp. 2.1: Determination of the 90° 1H Transmitter Pulse-Duration  
Exp. 2.2: Determination of the 90° 13C Transmitter Pulse-Duration  
Exp. 2.3: Determination of the 90° 1H Decoupler Pulse-Duration 
Exp. 2.4: The 90° 1H Pulse with Inverse Spectrometer Configuration 
Exp. 2.5: The 90° 13C Decoupler Pulse with Inverse Configuration  
Exp. 2.6: Composite Pulses 
Exp. 2.7: Radiation Damping 
Exp. 2.8: P ulse and Receiver Phases 
Exp. 2.9: Determination of Radiofrequency Power  


Chapter 3  Routine NMR Spectroscopy and Standard Tests    

Exp. 3.1: The Standard 1H NMR Experiment  
Exp. 3.2: The Standard 13C NMR Experiment  
Exp. 3.3: The Application of Window Functions 
Exp. 3.4: Computer-Aided Spectral Analysis 
Exp. 3.5: Line Shape Test for 1H NMR Spectroscopy  
Exp. 3.6: Resolution Test for 1H NMR Spectroscopy  
Exp. 3.7: Sensitivity Test for 1H NMR Spectroscopy  
Exp. 3.8: Line Shape Test for 13C NMR Spectroscopy  
Exp. 3.9: ASTM Sensitivity Test for 13C NMR Spectroscopy  
Exp. 3.10 :Sensitivity Test for 13C NMR Spectroscopy  
Exp. 3.11: Quadrature Image Test  
Exp. 3.12: Dynamic Range Test for Signal Amplitudes  
Exp. 3.13: 13° Phase Stability Test 
Exp. 3.14: Radiofrequency Field Homogeneity 


Chapter 4  Decoupling Techniques  

Exp. 4.1: Decoupler Calibration for Homonuclear Decoupling  
Exp. 4.2: Decoupler Calibration for Heteronuclear Decoupling  
Exp. 4.3: Low-Power Calibration for Heteronuclear Decoupling  
Exp. 4.4: Homonuclear Decoupling
Exp. 4.5: Homonuclear Decoupling at Two Frequencies
Exp. 4.6: The Homonuclear SPT Experiment
Exp. 4.7: The Heteronuclear SPT Experiment
Exp. 4.8: The Basic Homonuclear NOE Difference Experiment
Exp. 4.9: 1D Nuclear Overhauser Difference Spectroscopy
Exp. 4.10: 1D NOE Spectroscopy with Multiple Selective Irradiation
Exp. 4.11: 1H Off-Resonance Decoupled 13C NMR Spectra
Exp. 4.12: The Gated 1H-Decoupling Technique
Exp. 4.13: The Inverse Gated 1H-Decoupling Technique
Exp. 4.14: 1H Single-Frequency Decoupling of 13C NMR Spectra
Exp. 4.15: 1H Low-Power Decoupling of 13C NMR Spectra
Exp. 4.16: Measurement of the Heteronuclear Overhauser Effect


Chapter 5  Dynamic NMR Spectroscopy

Exp. 5.1: Low-Temperature Calibration Using Methanol
Exp. 5.2: High-Temperature Calibration Using 1,2-Ethanediol
Exp. 5.3: Dynamic 1H NMR Spectroscopy on Dimethylformamide
Exp. 5.4: The Saturation Transfer Experiment
Exp. 5.5: Measurement of the Rotating-Frame Relaxation Time T1


Chapter 6  1D Multipulse Sequences

Exp. 6.1: Measurement of the Spin Lattice Relaxation Time T1
Exp. 6.2: Measurement of the Spin Spin Relaxation Time T2
Exp. 6.3: 13C NMR Spectra with SEFT
Exp. 6.4: 13C NMR Spectra with APT
Exp. 6.5: The Basic INEPT Technique
Exp. 6.6: INEPT+
Exp. 6.7: Refocused INEPT
Exp. 6.8: Reverse INEPT
Exp. 6.9: DEPT-135
Exp. 6.10: Editing 13C NMR Spectra Using DEPT
Exp. 6.11: DEPTQ
Exp. 6.12: Multiplicity Determination Using PENDANT
Exp. 6.13: 1D-INADEQUATE
Exp. 6.14: The BIRD Filter
Exp. 6.15: TANGO
Exp. 6.16: The Heteronuclear Double-Quantum Filter
Exp. 6.17: Purging with a Spin-Lock Pulse
Exp. 6.18: Water Suppression by Presaturation
Exp. 6.19: Water Suppression by the Jump-and-Return Method


Chapter 7  NMR Spectroscopy with Selective Pulses

Exp. 7.1: Determination of a Shaped 90° 1H Transmitter Pulse
Exp. 7.2: Determination of a Shaped 90° 1H Decoupler Pulse
Exp. 7.3: Determination of a Shaped 90° 13C Decoupler Pulse
Exp. 7.4: Selective Excitation Using DANTE 
Exp. 7.5: SELCOSY
Exp. 7.6: SELINCOR: Selective Inverse H,C Correlation via 1J(C,H)
Exp. 7.7: SELINQUATE
Exp. 7.8: Selective TOCSY
Exp. 7.9: INAPT
Exp. 7.10: Determination of Long-Range C,H Coupling Constants
Exp. 7.11: SELRESOLV
Exp. 7.12: SERF


Chapter 8  Auxiliary Reagents, Quantitative Determinations,  and Reaction Mechanisms

Exp. 8.1: Signal Separation Using a Lanthanide Shift Reagent
Exp. 8.2: Signal Separation of Enantiomers Using a Chiral Shift Reagent
Exp. 8.3: Signal Separation of Enantiomers Using a Chiral Solvating Agent
Exp. 8.4: Determination of Enantiomeric Purity with Pirkle's Reagent
Exp. 8.5: Determination of Enantiomeric Purity by 31P NMR
Exp. 8.6: Determination of Absolute Configuration by the Advanced Mosher Method
Exp. 8.7: Aromatic Solvent-Induced Shift (ASIS)
Exp. 8.8: NMR Spectroscopy of OH Protons and H/D Exchange
Exp. 8.9: Water Suppression Using an Exchange Reagent
Exp. 8.10: Isotope Effects on Chemical Shielding
Exp. 8.11: pKa Determination by 13C NMR
Exp. 8.12: Determination of Association Constants Ka
Exp. 8.13: Saturation Transfer Difference NMR
Exp. 8.14: The Relaxation Reagent Cr(acac)3
Exp. 8.15: Determination of Paramagnetic Susceptibility by NMR
Exp. 8.16: 1H and 13C NMR of Paramagnetic Compounds
Exp. 8.17: The CIDNP Effect
Exp. 8.18: Quantitative 1H NMR Spectroscopy: Determination of the Alcohol Content of Polish Vodka
Exp. 8.19: Quantitative 13C NMR Spectroscopy with Inverse Gated 1H-Decoupling
Exp. 8.20: NMR Using Liquid-Crystal Solvents


Chapter 9  Heteronuclear NMR Spectroscopy

Exp. 9.1: 1H-Decoupled 15N NMR Spectra Using DEPT
Exp. 9.2: 1H-Coupled 15N NMR Spectra Using DEPT
Exp. 9.3: 19F NMR Spectroscopy
Exp. 9.4: 29Si NMR Spectroscopy Using DEPT
Exp. 9.5: 29Si NMR Spectroscopy Using Spin-Lock Polarization
Exp. 9.6: 119Sn NMR Spectroscopy
Exp. 9.7: 2H NMR Spectroscopy
Exp. 9.8: 11B NMR Spectroscopy
Exp. 9.9: 17O NMR Spectroscopy Using RIDE
Exp. 9.10: 47/49Ti NMR Spectroscopy Using ARING


Chapter 10  The Second Dimension

Exp. 10.1: 2D J-Resolved 1H NMR Spectroscopy
Exp. 10.2: 2D J-Resolved 13C NMR Spectroscopy
Exp. 10.3: The Basic H,H-COSY Experiment
Exp. 10.4: Long-Range COSY
Exp. 10.5: Phase-Sensitive COSY
Exp. 10.6: Phase-Sensitive COSY-45
Exp. 10.7: E.COSY
Exp. 10.8: Double-Quantum-Filtered COSY with Presaturation
Exp. 10.9: Fully Coupled C,H Correlation (FUCOUP)
Exp. 10.10: C,H-Correlation by Polarization Transfer (HETCOR)
Exp. 10.11: Long-Range C,H-Correlation by Polarization Transfer
Exp. 10.12: C,H Correlation via Long-Range Couplings (COLOC)
Exp. 10.13: The Basic HMQC Experiment
Exp. 10.14: Phase-Sensitive HMQC with BIRD Filter and GARP Decoupling
Exp. 10.15: Poor Man's Gradient HMQC
Exp. 10.16: Phase-Sensitive HMBC with BIRD Filter
Exp. 10.17: The Basic HSQC Experiment
Exp. 10.18: The HOHAHA or TOCSY Experiment
Exp. 10.19: HETLOC
Exp. 10.20: The NOESY Experiment
Exp. 10.21: The CAMELSPIN or ROESY Experiment
Exp. 10.22: The HOESY Experiment
Exp. 10.23: 2D-INADEQUATE
Exp. 10.24: The EXSY Experiment
Exp. 10.25: X,Y-Correlation


Chapter 11  1D NMR Spectroscopy with Pulsed Field Gradients

Exp. 11.1: Calibration of Pulsed Field Gradients
Exp. 11.2: Gradient Pre-emphasis
Exp. 11.3: Gradient Amplifier Test
Exp. 11.4: Determination of Pulsed Field Gradient Ring-Down Delays
Exp. 11.5: The Pulsed Field Gradient Spin-Echo Experiment
Exp. 11.6: Excitation Pattern of Selective Pulses
Exp. 11.7: The Gradient Heteronuclear Double-Quantum Filter
Exp. 11.8: The Gradient zz-Filter
Exp. 11.9: The Gradient-Selected Dual Step Low-Pass Filter
Exp. 11.10: gs-SELCOSY
Exp. 11.11: gs-SELTOCSY
Exp. 11.12: DPFGSE-NOE
Exp. 11.13: gs-SELINCOR
Exp. 11.14:  SELINCOR-TOCSY
Exp. 11.15: GRECCO
Exp. 11.16: WATERGATE
Exp. 11.17: Water Suppression by Excitation Sculpting
Exp. 11.18: Solvent Suppression Using WET
Exp. 11.19: DOSY
Exp. 11.20: INEPT-DOSY
Exp. 11.21: DOSY-HMQC


Chapter 12  2D NMR Spectroscopy With Field Gradients

Exp. 12.1: gs-COSY
Exp. 12.2: Constant-Time COSY
Exp. 12.3: Phase-Sensitive gs-DQF-COSY
Exp. 12.4: gs-HMQC
Exp. 12.5: gs-HMBC
Exp. 12.6: ACCORD-HMBC
Exp. 12.7: HMSC
Exp. 12.8: Phase-Sensititive gs-HSQC with Sensitivity Enhancement
Exp. 12.9: Edited HSQC with Sensitivity Enhancement
Exp. 12.10: HSQC with Adiabatic Pulses for High-Field Instruments
Exp. 12.11: gs-TOCSY
Exp. 12.12: gs-HMQC-TOCSY
Exp. 12.13: gs-HETLOC
Exp. 12.14: gs-J-Resolved HMBC
Exp. 12.15: 2Q-HMBC
Exp. 12.16: 1H-Detected 2D INEPT-INADEQUATE
Exp. 12.17: 1,1-ADEQUATE
Exp. 12.18: 1,n-ADEQUATE
Exp. 12.19: gs-NOESY
Exp. 12.20: gs-HSQC-NOESY
Exp. 12.21: gs-HOESY
Exp. 12.22: 1H,15N Correlation with gs-HMQC


Chapter 13  The Third Dimension 

Exp. 13.1: 3D HMQC-COSY
Exp. 13.2: 3D gs-HSQC-TOCSY
Exp. 13.3: 3D H,C,P-Correlation
Exp. 13.4: 3D HMBC


Chapter 14  Solid-State NMR Spectroscopy

Exp. 14.1: Shimming Solid-State Probe-Heads
Exp. 14.2: Adjusting the Magic Angle
Exp. 14.3: Hartmann Hahn Matching
Exp. 14.4: The Basic CP/MAS Experiment
Exp. 14.5: TOSS
Exp. 14.6: SELTICS
Exp. 14.7: Connectivity Determination in the Solid State
Exp. 14.8: REDOR
Exp. 14.9: High-Resolution Magic-Angle Spinning


Chapter 15  Protein NMR

Exp. 15.1: Pulse Determination for Protein NMR
Exp. 15.2: HN-HSQC
Exp. 15.3: HC-HSQC
Exp. 15.4: MUSIC
Exp. 15.5: HN-Correlation using TROSY
Exp. 15.6: HN-TOCSY-HSQC
Exp. 15.7: HNCA
Exp. 15.8: HN(CO)CA
Exp. 15.9: HNCO
Exp. 15.10: HN(CA)CO
Exp. 15.11: HCACO
Exp. 15.12: HCCH-TOCSY
Exp. 15.13: CBCANH
Exp. 15.14: CBCA(CO)NH
Exp. 15.15: HBHA(CBCACO)NH
Exp. 15.16: HN(CA)NNH
Exp. 15.17: HN-NOESY-HSQC
Exp. 15.18: HC-NOESY-HSQC
Exp. 15.19: 3D HCN-NOESY
Exp. 15.20: HNCA-J

Appendix 1
Pulse Programs

Appendix 2
Instrument Dialects 

Appendix 3
Classification of Experiments

Appendix 4
Elementary Product Operator Formalism Rules

Appendix 5
Chemical Shift and Spin-Coupling Data for Ethyl Crotonate and Strychnine

Glossary and Index
 

Name of Pulse Programs

In the following table we provide the names of the standard Bruker pulse programs (XWINNMR_3.5) with which the experiments have been performed, or which are closely related to the ones actually used. Where no entry is given, the pulse programs were written directly for this purpose and may be obtained from the authors via this internet page. Users of Varian or Jeol instruments are encouraged to provide us with the names of the relevant pulse programs.

Note that the notation for pulses and delays used in the Bruker pulse programs differs considerably from the notation and numbering used throughout this book.

 

Exp.

BRUKER

VARIAN

JEOL

2.1

zg

 

 

2.2

zgdc

 

 

2.3

decp90

 

 

2.4

zg

 

 

2.5

decp90

 

 

2.6

 

 

 

2.7

zg

 

 

2.8

zg

 

 

2.9

zg

 

 

3.1

zg

 

 

3.2

zgdc

 

 

3.3

zg

 

 

3.4

 

 

 

3.5

zg

 

 

3.6

zg

 

 

3.7

zg

 

 

3.8

zgcw

 

 

3.9

zg

 

 

3.10

zg

 

 

3.11

zg

 

 

3.12

zg

 

 

3.13

 

 

 

3.14

zg

 

 

4.1

zghd2

 

 

4.2

zgcw

 

 

4.3

zgcw

 

 

4.4

zghd2

 

 

4.5

 

 

 

4.6

 

 

 

4.7

 

 

 

4.8

zgf2pr

 

 

4.9

zgf2pr

 

 

4.10

zgf2pr

 

 

4.11

zgcw

 

 

4.12

zggd

 

 

4.13

zgig

 

 

4.14

zgcw

 

 

4.15

 

 

 

4.16

 

 

 

5.1

zg

 

 

5.2

zg

 

 

5.3

zg

 

 

5.4

 

 

 

5.5

 

 

 

6.1

t1ir

 

 

6.2

cpmg

 

 

6.3

 

 

 

6.4

apt

 

 

6.5

ineptnd

 

 

6.6

 

 

 

6.7

ineptrd

 

 

6.8

iineptnd

 

 

6.9

dept

 

 

6.10

dept

 

 

6.11

 

 

 

6.12

 

 

 

6.13

inad1d

 

 

6.14

 

 

 

6.15

 

 

 

6.16

hmqcnd1d

 

 

6.17

 

 

 

6.18

zgpr

 

 

6.19

P11

 

 

7.1

selzg

 

 

7.2

decp90sp

 

 

7.3

decp90sp

 

 

7.4

 

 

 

7.5

selco

 

 

7.6

 

 

 

7.7

selina

 

 

7.8

semlzf

 

 

7.9

 

 

 

7.10

 

 

 

7.11

 

 

 

7.12

 

 

 

8.1

zg

 

 

8.2

zg

 

 

8.3

zg

 

 

8.4

zg

 

 

8.5

zgdc

 

 

8.6

zg

 

 

8.7

zg

 

 

8.8

zg

 

 

8.9

cpmg

 

 

8.10

zgdc

 

 

8.11

zgdc

 

 

8.12

zg

 

 

8.13

 

 

 

8.14

zgdc

 

 

8.15

zg

 

 

8.16

zg, zgdc

 

 

8.17

zgdc

 

 

8.18

zg

 

 

8.19

zgig

 

 

8.20

zg

 

 

9.1

dept

 

 

9.2

deptnd

 

 

9.3

zg

 

 

9.4

dept

 

 

9.5

 

 

 

9.6

zgdc

 

 

9.7

zg

 

 

9.8

zg

 

 

9.9

 

 

 

9.10

aring

 

 

10.1

jresqf

 

 

10.2

hjresqf

 

 

10.3

cosyqf

 

 

10.4

cosylrqf

 

 

10.5

cosyph

 

 

10.6

cosyph

 

 

10.7

ecos3cph

 

 

10.8

cosydfphpr

 

 

10.9

 

 

 

10.10

hxcoqf

 

 

10.11

hxcoqf

 

 

10.12

colocqf

 

 

10.13

hmqcndqf

 

 

10.14

hmqcbiph

 

 

10.15

 

 

 

10.16

 

 

 

10.17

hsqcndph

 

 

10.18

mlevph

 

 

10.19

 

 

 

10.20

noesyph

 

 

10.21

roesyph.2

 

 

10.22

hoesyqf

 

 

10.23

inadqf.2

 

 

10.24

noesyph

 

 

10.25

 

 

 

11.1

calibgp

 

 

11.2

 

 

 

11.3

 

 

 

11.4

 

 

 

11.5

 

 

 

11.6

 

 

 

11.7

hmqcgpnd1d

 

 

11.8

 

 

 

11.9

 

 

 

11.10

selcogp

 

 

11.11

selmlgp

 

 

11.12

selnogp

 

 

11.13

 

 

 

11.14

 

 

 

11.15

 

 

 

11.16

p3919gp

 

 

11.17

 

 

 

11.18

 

 

 

11.19

ledbpgp2s

 

 

11.20

 

 

 

11.21

 

 

 

12.1

cosygpqf

 

 

12.2

 

 

 

12.3

cosygpmfph

 

 

12.4

hmqcgpqf

 

 

12.5

hmbcgplpndqf

 

 

12.6

 

 

 

12.7

 

 

 

12.8

hsqcetgpsi

 

 

12.9

hsqcedetgpsisp

 

 

12.10

hsqcetgpsp

 

 

12.11

mlecetgp

 

 

12.13

hmqcgpmlqf

 

 

12.14

 

 

 

12.15

 

 

 

12.16

 

 

 

12.17

adeq11etgp

 

 

12.18

adeq1netgp

 

 

12.19

noesygpph

 

 

12.20

 

 

 

12.21

 

 

 

12.22

hmqcgpqf

 

 

13.1

 

 

 

13.2

mlevhsqcetgp3d

 

 

13.3

 

 

 

13.4

 

 

 

14.1

zg

 

 

14.2

zg

 

 

14.3

cp

 

 

14.4

cp

 

 

14.5

cptossa

 

 

14.6

cpseltics

 

 

14.7

cpnqs

 

 

14.8

 

 

 

14.9

zg

 

 

15.1

dec180sp

 

 

15.2

hsqcetf3gpsi

 

 

15.3

hsqcetgpsi

 

 

15.4

 

 

 

15.5

trosyetf3gpsi

 

 

15.6

mlevhsqcetf3gp3d

 

 

15.7

hncagp3d

 

 

15.8

hncocagp3d.2

 

 

15.9

hncogp3d

 

 

15.10

hncacogp3d

 

 

15.11

hcacogp3d

 

 

15.12

hcchdigp3d

 

 

15.13

cbcanhgp3d

 

 

15.14

cbcaconhgp3d

 

 

15.15

hbhaconhgp3d

 

 

15.16

hncannhgp3d.

 

 

15.17

noesiif3gpsi3d.2

 

 

15.18

noesiietgp3d.2

 

 

15.19

noesycngp3d

 

 

15.20

hncajcgp3d