• Image 1
  • Image 2
  • Image 3
  • Image 4
  • Image 5
 
image

Laboratory Experiments for Future and Past Flight Missions 

Enceladus is known to eject material into space from a subsurface global salty water ocean. Therefore, the Cassini mission targeting the Enceladus plume could easily collect plume material in a flyby over the south polar terrain at a suitable altitude. Due to the big success of the Cassini space mission, follow up missions are planned for the future. Because much of the success in analyzing the space data came from laboratory experiments the current projects target at developing instruments for laboratory experiments, which on the one hand may have the potential to be even implemented on board of future space missions. On the other hand, the developed instruments will have the potential to support these missions through laboratory experiments that provide data for understanding particle interactions and atmospheric compositions of planets and their moons, as well as in the quest for searching life on planets and their moons in our solar system.

 

Publications

1. Klenner, F.; Postberg, F.; Hillier, J.; Khawaja, N.; Reviol, R.; Stolz, F.; Cable, M. L.; Abel, B.; Noelle, L., Analog Experiments for the Identification of Trace Biosignatures in Ice Grains from Extraterrestrial Ocean Worlds. Astrobiology 2020, 20 (2), 179-189. 

2. Klenner, F.; Postberg, F.; Hillier, J.; Khawaja, N.; Cable, M. L.; Abel, B.; Kempf, S.; Glein, C. R.; Lunine, J. I.; Hodyss, R.; Reviol, R.; Stolz, F., Discriminating Abiotic and Biotic Fingerprints of Amino Acids and Fatty Acids in Ice Grains Relevant to Ocean Worlds. Astrobiology 2020, 20 (10), 1168-1184. 

3. Klenner, F.; Postberg, F.; Hillier, J.; Khawaja, N.; Reviol, R.; Srama, R.; Abel, B.; Stolz, F.; Kempf, S., Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. Rapid Commun Mass Spectr 2019, 33 (22), 1751-1760. 

4. Postberg, F.; Khawaja, N.; Abel, B.; Choblet, G.; Glein, C. R.; Gudipati, M. S.; Henderson, B. L.; Hsu, H. W.; Kempf, S.; Klenner, F.; Moragas-Klostermeyer, G.; Magee, B.; Nolle, L.; Perry, M.; Reviol, R.; Schmidt, J.; Srama, R.; Stolz, F.; Tobie, G.; Trieloff, M.; Waite, J. H., Macromolecular organic compounds from the depths of Enceladus. Nature 2018, 558 (7711), 564-568. 

5. Mitri, G.; Postberg, F.; Soderblom, J. M.; Wurz, P.; Tortora, P.; Abel, B.; Barnes, J. W.; Berga, M.; Carrasco, N.; Coustenis, A.; de Vera, J. P. P.; D'Ottavio, A.; Ferri, F.; Hayes, A. G.; Hayne, P. O.; Hillier, J. K.; Kempf, S.; Lebreton, J. P.; Lorenz, R. D.; Martelli, A.; Orosei, R.; Petropoulos, A. E.; Reh, K.; Schmidt, J.; Sotin, C.; Srama, R.; Tobie, G.; Vorburger, A.; Vuitton, V.; Wong, A.; Zannoni, M., Explorer of Enceladus and Titan ((ET)-T-2): Investigating ocean worlds' evolution and habitability in the solar system. Planet Space Sci 2018, 155, 73-90. 

6. Wiederschein, F.; Vohringer-Martinez, E.; Beinsen, A.; Postberg, F.; Schmidt, J.; Srama, R.; Stolz, F.; Grubmuller, H.; Abel, B., Charge separation and isolation in strong water droplet impacts. Phys Chem Chem Phys 2015, 17 (10), 6858-6864. 

7. Kempf, S.; Srama, R.; Grun, E.; Mocker, A.; Postberg, F.; Hillier, J. K.; Horanyi, M.; Sternovsky, Z.; Abel, B.; Beinsen, A.; Thissen, R.; Schmidt, J.; Spahn, F.; Altobelli, N., Linear high resolution dust mass spectrometer for a mission to the Galilean satellites. Planet Space Sci 2012, 65 (1), 10-20. 

8. Postberg, F.; Kempf, S.; Schmidt, J.; Brilliantov, N.; Beinsen, A.; Abel, B.; Buck, U.; Srama, R., Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 2009, 459 (7250), 1098-1101.