Accent Strength in Lithuanian
Yuriy Kushnir, IGRA, Universität Leipzig

Background. Lithuanian is a language with well-preserved Indo-European accentuation properties. It displays the well-known IE Basic Accentuation Principle (BAP), also found in various Slavic languages, Vedic Sanskrit and others (cf. Halle & Vergnaud 1987). In addition to BAP, Lithuanian has De Saussure’s Law (DS), which can be synchronically described as an accent moving to a short inflectional affix from the last mora of a stem. Interestingly enough, the shift takes place even when the affix has a weak accent (acute accent here) and the stem has a strong one (double acute): įind + ū → indū. Blevins (1993) is the only relatively modern analysis of Lithuanian accent which attempts to tackle the phenomenon in question. Unfortunately, it does not distinguish between different accent levels and has all-or-nothing accent representations. The analysis must therefore rely quite heavily on extraprosodicity, and also make additional stipulations regarding weak stems. Additionally, the analysis overgenerates instances of affixal stress because it fails to recognize that the affixes in the DS set can have both weak and strong accents, just like any other morpheme in Lithuanian.

Proposal. There are ways to improve the system proposed by Blevins. However, in this case, one must continue using extraprosodicity, as well as additional language-specific constraints (cf. Kiparsky 2003 on Greek). Instead of pursuing this option, I would like to suggest that Lithuanian accents may vary in strength in the lexicon. Interestingly enough, both weak and strong accents have one single surface correlate, making this distinction relevant only in phonology but not phonetics. In order to restrict the system, I use only two degrees of strength for Lithuanian (instead of numeric weight values): a regular H tone and a strong Hʰ tone with an h-register. Morphemes in Lithuanian may be strongly accented (Hʰ), weakly accented (H), or completely accent-free (Ø). Given this array of URs, both BAP and the DS shift can be straightforwardly derived using well-established constraints: faithfulness constraints protecting underlying accents, the positional faithfulness constraint driving the accent to the right edge of the phonological word, as well as the constraint *Clash penalizing morpheme combinations which end up with two underlying accents on adjacent moras. BAP is derived according to the following basic principles: (a) a strong accent always wins over a weak accent (affixal accent on strong affixes following weak stems); (b) if the former rule does not apply, stem accent overrides affix accent. The DS shift is explained as a cumulative effect in Lithuanian grammar. Even though preference is normally given to stems over affixes, an affix may exceptionally surface with the main word accent in case two conditions are fulfilled: (a) the affixal accent is aligned with the right edge of the word; (b) the two underlying accents are adjacent, thus violating *Clash. As a result, the alignment constraint and *Clash cumulatively override stem faithfulness, which is ranked higher than both. The effect can be derived using local constraint conjunction (Aissen 2003) and, potentially, Harmonic Grammar (Murphy 2017). An interesting issue is the fact the all stems in Lithuanian seem to need an underlying accent, strong or weak. While affixes display all the three accentuation types described above (strong, weak and zero), the absence of accent-free (nominal) roots seems to be a systematic gap in the system. This may have to do with the special, privileged, status of roots in Lithuanian (and also many other languages).

Summary. Even though the distinction is obliterated on the surface, there is compelling evidence that Lithuanian morphemes have two types of underlying accents, with faithfulness to strong accents dominating over stem faithfulness in this particular language. The specifically Lithuanian accent shift to certain affixes can be derived as a cumulative effect where two lower-ranked principles together override a higher-ranked one.