Integrating accentual generalizations and morpheme-specific exceptions: the role of diacritic weight

Alexandre Vaxman (University of Connecticut)

This talk will address the long-standing problem of morpheme-specific exceptions in accent assignment. I will focus here on two types of accent systems in which accent location is not (fully) phonologically predictable, namely lexical accent systems with accented dominant suffixes and phonological weight-sensitive systems in which certain morphemes violate the accent rule (“mixed systems”), as illustrated with representative case studies from Standard Uzbek (Turkic, Uzbekistan) and Eastern Literary Mary (Permic, Russia), respectively. The goal is to propose a single accentual grammar that would uniformly derive regular and exceptional accent locations, both within a given accent system and across the two types of systems mentioned above, as well as in traditional phonological accent systems. To that end, I introduce the *Scales-and-Parameters theory* (S&P), a parametric, non-metrical theory which separates word accent from rhythm and does not recognize metrical constituency (taking as a point of departure the PAF theory of van der Hulst 1996, 2010). While the parameter system at the core of S&P attains descriptive adequacy with respect to phonological accent systems, it cannot account alone for lexical accent systems and mixed systems. I suggest extending the notion “weight” to morphemes by treating their ability to attract/repel word accent as “diacritic weight” (see van der Hulst 1999). Importantly, unlike lexical accent, weight (including diacritic weight) is ordinal. This, in turn, leads to novel types of weight scales that order diacritic and/or phonological weight. Word accent is, then, assigned by the S&P parameter system with reference to such scales. Finally, I will argue that the proposed theory is superior to the Accent Deletion account of dominance (Kiparsky 1984, Halle & Vergnaud 1987) and to the Simplified Grid Theory (Halle & Idsardi 1995).

References


