Ergatives Move Too Early
Anke Assmann, Doreen Georgi, Fabian Heck, Gereon Müller, & Philipp Weisser
Universität Leipzig
GLOW 35, Universität Potsdam, March 28-30, 2012

1. Background
• Some kinds of linguistic expressions are less mobile than others; they may not cross
domains of linguistic complexisms that are transparent for other items: object vs. subject, argument vs. adjunct,
referential vs. non-referential, having an address or not (Manzini (1992)), etc.
• This can be captured by imposing appropriate constraints on empty categories that are
assumed to be left by movement operations (cf., e.g., the Empty Category Principle
(ECP) for traces, or the different constraints for trace vs. pro in Cinque (1990)).
• Such options do not exist if:
 – All constraints are either principles of efficient computation or imposed by the
 interfaces (Chomsky (2001; 2008)).
 – Traces do not exist. (This may be so because displacement does not leave a reflex
 in the original position; see Epstein & Seely (2002), Unger (2010), Müller (2011)
 for some options; or because a multidominance approach is adopted; see Gärtner
• Conclusion: If some items are less mobile than others, this must be so because their
 movement may lead to problems elsewhere, either for themselves or for other items in
 the clause.
• Suggestion: Movement of certain items (a) may create problems for other, sufficiently
 similar items (β).
• Goal: A relational, co-argument-based approach to displacement (α cannot move in the
 presence of β because α-motion creates problems for β-licensing) of the type that
 has sometimes been suggested for case assignment (α is assigned α-case in the presence
 of β see Marantz (1991), Böttner & Hale (1996), Wunderlich (1997), Stiebels (2000),
 McFadden (2004)).

2. Introduction
Observation:
In many morphologically ergative languages, ergative arguments (DP_{erg}) cannot undergo
A-movement (wh-movement, focussing, relativization).

Question:
What explains the prohibition against movement of ergative subject DPs?

Answer:
If an ergative subject DP undergoes movement, an absolutive object DP cannot get case;
Movement of the ergative DP per se is unproblematic; but problems are created for its absolu-
tive co-argument. Thus, the approach captures Polinsky et al.’s (2011) hypothesis that
ergative displacement leads to a processing problem because removal of an ergative DP from
a clause makes identification of the grammatical function of the absolutive DP difficult (but
not vice versa).

3. Data
3.1 Wh-Movement
(1) Wh-Movement of DP_{erg} vs. DP_{abs} in Mam (Mayan; England 1983a; 1989; Campana
1992:88):
 a. Ma-a? chi tzaj t-zyu-’in Cheep kab’ xinaq
 RPST-EMPH 3PL.ABS DIR 3SG.ERG-grab-DS José two man
 José grabbed the men.'
 b. Alkyye’-qa xhi tzaj t-zyu-’in Cheep
 who=PL RPST. DEP 3PL.ABS DIR 3SG.ERG-grab-DS José
 ‘Whom did José grab?’
 c. *Alkyye saj t-zyu-’in kab’ xinaq
 who RPST. DEP 3SG.ABS. DIR 3SG.ERG-grab-DS two man
 ‘Who grabbed the men?’

(2) Wh-Movement of DP_{abs} in Mam (England 1983a; 1989; Campana 1992:92):
 a. Ma chi b’ee xtinaq
 RPST 3PL.ABS walk man
 ‘The men walked.’
 b. Alkyye xhi b’ee?
 who 3PL.ABS=DEP walk
 ‘Who walked?’

(3) Wh-Movement in Kamaari (Katukinan; Quezales 2010):
 a. Hanian tu Nodia mah=ho-hoo-nin?
 who(m) Q Nodia ERG-call-DURATIVE
 ‘Whom is Nodia calling?’
 b. Hanian tu waokjyijin?
 who(m) Q arrive here-DURATIVE
 ‘Who is arriving here?’
 c. *Hanian tan nu=dyuman tah yu?
 who here ERG-spread water Q
 ‘Who spread water here?’
 d. Hanian tan wz=dyuman tah yu?
 who here AP-spread water Q
 ‘Who spread water here?’
3.2 Relativization

(4) Relativization of DP$_{erg}$ vs. DP$_{abs}$ in Jacalteco (Mayan; Campagna 1992:91; Craig 1977)

a. ... ch'êen one [xínuko ...]
 the CLASS earrings buy.3ABS.1ERG
 '...the earrings that I bought...

b. X-O-w-il ma [xto ew]
 ASP-3ABS-1ERG-see CLASS go.3ABS yesterday
 'I saw (the man) who went yesterday.'

c. *... metx tx'i [ẹxint'ā n'an unin ...]
 the CLASS dog bite.3ABS.3ERG little child
 '...the dog that bit the child...'

(5) Relativization of DP$_{erg}$ vs. DP$_{abs}$ in Ngirbal (Pama-Nyungan; Dixon 1994: 160-170)

a. yuma-O [çp banaga-ju] yahu-gu ban-u
 father-ABS return-REL-ABS mother-ERG see-NONPUT
 'Mother saw the father who was returning.'

b. yuma-O yahu-gu [çp banaga-ju-ru] ban-u
 father-ABS mother-ERG return-REL-ERG see-NONPUT
 'Mother, who was returning, saw father.'

c. *yahu-O [çp banaga-lu yuma-O] banaga-ru
 father-ABS see-REL-ABS mother-ABS return-NONPUT
 'Mother, who saw father, was returning.'

d. yahu-O [çp banaga-lu yuma-gu] banaga-ru
 mother-ABS see-ANTIPASS-REL-ABS father-DAT return-NONPUT
 'Mother, who saw father, was returning.'

(6) Relativization in Kanamari (Queixalos 2010)

a. Yo-hi-k nyan Nodia na=dahudyi-nin tukuna
 1SG-know DETIC Nodia ERG=bring-DEPENDENT Indian
 'I know the Indian that Nodia brought.'

b. Yo-hi-k nyan waokddyi-nin anyan piya
 1SG-know DETIC arriva.here-DEPENDENT this man
 'I know the man who arrived here.'

c. *Yo-hi-k nyan piya na=dahudyi-nin Hanani
 1SG-know DETIC man ERG=bring-DEPENDENT H.
 'I know the man who brought Hanani.'

d. Yo-hi-k nyan piya wa=dahudyi-nin Hanani
 1SG-know DETIC man A=bring-DEPENDENT H.
 'I know the man who brought Hanani.'

(7) Relativization in Tongan (Austronesian; Otsuka (2006))

a. e fefine [na'e filli 'e Sione]
 DEF woman PST choose ERG Sione
 'the woman (who) Sione chose'

b. *e fefine [na'e filli 'a Sione]
 DEF woman PST choose ABS Sione
 'the woman (who) chose Sione'

3.3 Focus Movement

(8) Focus Movement of DP$_{erg}$ vs. DP$_{abs}$ in Man (England 1983b:4)

a. Ma chi kub-t'zyu-ñ xinaq qa-cheej
 ASP 3PL.ABS DIR 3SG.ERG-grab-DAT man PL-horse
 'The man grabbed the horses.'

b. Qa-cheej xii kub-t'zyu-ñ xinaq
 PL-horse DEP.ASP 3PL.ABS DIR 3SG.ERG-grab-DAT man
 'The man grabbed THE HORSES.'

c. *Xinaq chi kub-t'zyu-ñ qa-cheej
 man 3PL.ABS DIR 3SG.ERG-grab-DAT PL-horse
 'THE MAN grabbed the horses.'

(9) Focus Movement of DP$_{abs}$ in Man (England 1983b:4)

a. Ma tzu-ul xinaq
 ASP 3SG.ABS-arrive.here man
 'The man arrived here.'

b. Xinaq =ulu
 DEP.ASP 3SG.ABS-arrive.here
 'THE MAN arrived here.'

(10) Focus Movement in Kanamari (Queixalos 2010)

a. Maramarana na=tyo lana tona tyo M.
 ERG/GEN=daughter FOCUS go.away exclamative
 'It's Maramarana's daughter that went away.'

b. A-okatyawa lana Aro na=nuluk kariwa
 35G-wife FOCUS Aro give white.man ERG=LOC
 'It's his own wife that Aro gave to the white man.'

c. *Waro na=minkudak-boni waapa
 parrot ERG=indquarters-peek dog
 'It's the parrot that peeked the dog's hindquarters.'

4. Previous Analyses

Three kinds of analyses

1. The trace of DP$_{erg}$ is not licensed (e.g., in ECP terms, it is not strictly governed; cf. that-trace effects in English).

2. There is nothing wrong with ergative movement as such; it's just that the relevant lan-
by whom were the lenses fitted?

problems with analysis 2.

the analysis only works for mayan languages with agent focus constructions. (passive,

where are you going?

with what did you cut the wood?

with whom do you have your dog?

in whose house did you have your dog?

who was the main player in the game?

is your team ready to compete?

who will win the game?

when did you arrive in this city?

how much did you pay for this toy?

why did you bring your dog?
in the first place in a model of syntax where all operations are feature-driven. A standard assumption here is that edge features ([*X*]) that trigger intermediate movement steps can be inserted on all intervening phrase heads.

5.3 Assignment of structural case

Three proposals in minimalist syntax:

- T assigns ergative, v assigns accusative, nominative = absolutive is default case. (Bittner & Hale (1996))

The third type of analysis will be presupposed in what follows. (This assumes that the ergative is a structural case. See Nash (1996), Alexisdou (2001), Woolford (2001; 2006), Legate (2008) for the opposite view. However, Woolford & Legate also assume that ergative is assigned by v; the only relevant difference is that they postulate that ergative assignment must go hand in hand with θ-assignment.)

5.4 Patterns of argument encoding

Timing of elementary operations: The analysis in Müller (2004), Heck & Müller (2007) crucially relies on timing. Ergative vs. accusative patterns of argument encoding result from different (local optimality-theoretic) resolutions of conflicting earliness requirements for Agree and Merge on the vP level: Agree \(\rightarrow \) Merge \rightarrow accusative pattern; Merge \(\rightarrow \) Agree \rightarrow ergative pattern.

(18) Two types of features that drive operations:

a. Structure-building features (edge features, subcategorization features) trigger Merge: [+F*]
 b. Probe features trigger Agree: [+F*].
 c. Agree and Merge both take place under m-command (i.e., Agree may affect a head and its specifier).

(19) Agree Condition:
Probes ([+F*]) participate in Agree.

(20) Merge Condition:
Structure-building features ([*X*]) participate in Merge.

Assumptions about argument encoding:

(i) There is one structural argument encoding feature: CASE.

(ii) CASE can have two values: ext(ernal) and int(ernal) (determined with respect to vP, the predicate domain).

(iii) [CASEext] = nominative/absolutive, [CASEint] = accusative/ergative (Murasugi (1992)).

(iv) [CASE] features figure in Agree relations involving T/v and DP, as in (21).

(21) The role of T and v in argument encoding:
 a. T bears a probe [CASEext] that instantiates a matching [CASEext] goal on DP.
 b. v bears a probe [CASEint] that instantiates a matching [CASEint] goal on DP.

(22) Argument encoding by case or agreement:
 a. Argument encoding proceeds by case-marking if [CASE:o] is morphologically realized on DP.
 b. Argument encoding proceeds by agreement-marking if [CASE:o] is morphologically realized on T/v.

Side remark:
Case/agreement mismatches may arise, in the sense that agreement deviates from the basic case-marking pattern in a language. A possible analysis: Secondary, purely φ-based Agree.

A conspicuous property.
The head v has a dual role: It participates in a Merge operation with a DP, and it also participates in an Agree relation with a DP. This dual role has far-reaching consequences for the nature of argument encoding.

A constraint conflict.
Consider a simple transitiv context, with two arguments DPint, DPext. Suppose that the derivation has reached a stage \(\Sigma \) where v has been merged with a VP containing DPint, with DPext waiting to be merged with \(v \). The workspace of the derivation. At this point, a conflict arises: AC demands that the next operation is Agree(v,DPint) (see (a)). MC demands that it is Merge(DPext,v) (see (b)). Application of these constraints at each derivational step derives the effects of the Earliness Principle (Pesetsky (1989)).

(23) Stage \(\Sigma \):

\[
\text{DP}_{[\.\square]} \quad \text{V} \quad \text{DP}_{[\.\square]} \quad \text{v'}
\]

\[
\text{V} \quad \text{DP}_{[\.\square]} \quad \text{V} \quad \text{DP}_{[\.\square]} \quad \text{v'}
\]

\[
\text{V} \quad \text{DP}_{[\.\square]} \quad \text{V} \quad \text{DP}_{[\.\square]} \quad \text{v'}
\]

\[
\text{V} \quad \text{DP}_{[\.\square]} \quad \text{V} \quad \text{DP}_{[\.\square]} \quad \text{v'}
\]
Given the Specifier-Head Bias, the configuration in (27-a) may involve checking of $[\text{case:int}]$ by X or not (leading to a crash of the derivation or not because of an unchecked $[\text{case:ext}]$), whereas the configuration in (27-b) must involve checking of $[\text{case:int}]$ by X (which invariably leads to a crash).

(27) a. $[X \mathcal{X}_{[\text{case:ext}]} \left[z_p \ldots \alpha_{[\text{case:int}]} \ldots \beta_{[\text{case:ext}]} \ldots \right]]$
 b. $[\mathcal{X} \alpha_{[\text{case:int}]} \left[X \mathcal{X}_{[\text{case:ext}]} \left[z_p \ldots t \alpha \ldots \beta_{[\text{case:ext}]} \ldots \right] \right]]$

Note:
There is no minimality condition on Agree or Merge; minimality effects are derivable from the PIC; see Müller (2011). (Thus, there is no defective intervention because there is no minimality constraint; but there is “defective non-intervention.”) Suppose that both α and β are PIC-accessible to X in (27); this would imply that the PIC is slightly less restrictive, as eventually proposed in Chomsky (2001), or that Agree operations can escape the PIC, as suggested by Bošković (2007), among others.

Assumption:
Checking of $[\text{case:int}]$ on α with a conflicting $[\text{case:ext}]$ on X is harmless as such; α will simply maintain its original feature value. However, $[\text{case:ext}]$ is then discharged, and not available for further operations anymore.

6. Analysis

6.1 Displacement in Languages with Ergative Encoding Patterns

6.1.1 *DP_{erg} Movement
Given the PIC, DP_{erg} needs to move from SpecV to SpecT if it is to undergo subsequent movement to SpecC (wh-movement, relativization, focus movement). Given that the “ergative” ranking Merge \gg Agree (more precisely, MC \gg AC) is also maintained on the TP cycle (see Lühne (2008) for an application of this idea to a different empirical domain, viz., word order), movement of DP_{erg} (as an instance of internal Merge) will have to precede Agree of T with the VP-internal DP that has not yet valued its case feature (as absolute). Given the Specifier-Head Bias, DP_{erg} will next maraud T’s case probe; the internal argument DP will consequently remain without a checked case feature. Assuming that all DPs must have their case features checked eventually (and assuming that there is no such thing as a default case), the derivation will therefore crash. In a nutshell, ergative movement is impossible because the remaining argument cannot get absolute case in this context.

(Note: Underlining signals a discharged probe in the following trees; discharged edge features are not represented; t’s are only inserted as mnemonic devices.)
(28) Illegitimate movement of DP_{erg}

a. Structure after T is merged

b. Merge before Agree triggers movement of DP_{erg} first

c. Specifier-Head Bias triggers maraudage of T

(29) Legitimate movement of DP_{abs}

a. Structure after T is merged

b. Merge before Agree triggers movement of DP_{abs} first

c. Finally, Agree with T ensures external case of DP_{abs}; no maraudage

6.1.2 DP_{abs} Movement

No such problem arises for movement of DP_{abs} because DP_{erg} has already been assigned case when DP_{abs} moves to SpecT.
On the vP cycle in (20-a), MC \(\gg\) AC ensures that external Merge of DP_{ext} and (subsequent; Chomsky (2001; 2008)) internal Merge of DP_{int} (both triggered by \([\bullet X \bullet] \) features on \(v\)) both precede Agree. Since there is no MLC-like constraint and both items occupy a Specv position (so the Specifier-Head Bias does not discriminate the options), the derivation can now proceed in two ways: Agree(\(v, \text{DP}_{\text{ext}}\)) ultimately leads to a well-formed output, as indicated; in contrast, Agree(\(v, \text{DP}_{\text{int}}\)) in (20-a) would lead to a crash because \(\text{DP}_{\text{ext}}\) would then never be assigned case.

6.2 Displacement in Languages with Accusative Encoding Patterns

6.2.1 DP_{acc} Movement
The ranking Agree \(\gg\) Merge that gives rise to an accusative pattern in the first place (on the vP cycle) is also active on the TP cycle. Here it ensures that Agree with the DP_{nom} in Specv can be carried out before the DP_{acc} undergoes successive-cyclic movement to SpecT (and then to a higher position).

(30) Legitimate movement of DP_{acc}

a. Structure after T is merged

\[
\begin{align*}
\text{TP} & \quad T' \\
T_{[\text{\text{[c.ext]}}]} & \quad \text{DP}_{[\text{[c.int]}]} \\
\text{vP} & \quad \text{DP}_{[\text{[c.int]}]} \\
\end{align*}
\]

b. No maraudage: Agree before Merge triggers case valuation of DP_{nom} next

6.2.2 DP_{nom} Movement
Similarly to the DP_{abs} case, there is no problem for movement of DP_{nom} because DP_{acc} has already been assigned case when DP_{nom} moves.

(31) Legitimate movement of DP_{nom}

a. Structure after T is merged

\[
\begin{align*}
\text{TP} & \quad T' \\
T_{[\text{\text{[c.ext]}}]} & \quad \text{vP} \\
\text{v} & \quad \text{DP}_{[\text{[c.int]}]} \\
\end{align*}
\]

b. Agree before Merge triggers valuation of DP_{nom} next
c. Finally, movement of DP_{nom} takes place to SpecT

\[\text{TP} \]
\[\text{DP}_{[\text{ext}]} \]
\[\text{T}' \quad \text{vP} \]
\[\text{t} \quad \text{v'} \quad \text{v} \quad \text{VP} \]
\[\text{N} \quad \text{DP}_{[\text{int}]} \]

6.3 Opacity

Note:
Under the present analysis, the data show opacity effects (Chomsky (1951; 1975), Kiparsky (1973), Arregi & Nevins (2012)).

- Merge(T,DP_{erg}) bleeds Agree(T,DP_{aba}): A crash results.
- Move(T,DP_{soc}) counter-bleeds Agree(T,DP_{nom}): DP_{soc} movement comes too late to effect bleeding, but this cannot be detected by just looking at the output representations on the TP cycle (even if they are enriched with devices like traces): DP_{soc} in SpecT does occupy the preferred position for case valuation with T, compared with DP_{nom} in Specv. (Note that the opacity here is of a type that cannot be accounted for representationally by positing devices like traces. As a matter of fact, both rule interactions are strictly speaking opaque because their effects cannot be read off final output representations; but the bleeding effect with ergative movement can be if traces are present, unlike the counter-bleeding effect with accusative movement.)

7. Outlook

7.1 Open Questions

- What about DP_{erg} of unergative intransitive verbs in languages with active encoding patterns? Can they move or not? Does the theory predict them to be mobile or not? (A relevant issue: Are unergative intransitive verbs hidden transitive verbs?)
- Why do not all ergative languages instantiate a ban on ergative movement? Options include:
 - The order of operations on T may differ from the order on v (perhaps as a marked option).
 - T is not a phase head in some languages.

- DPs cannot check multiple case features in some languages.
- What happens if two arguments are moved? The analysis predicts that if both the ergative and the absolutive DP undergo A-bar movement via SpecT, wellformedness can result (in one of the two possible derivations). Is this prediction confirmed? Data such as (32) would seem to indicate that it is.
- What about repair strategies for the ban on ergative movement such as the agent focus (AF) construction (Stiebels 2000, Aissen 1999)? Plausibly, the agent focus morpheme is the morphological realization of an added probe which assigns case to DP_{int}, thereby preventing a crash of the derivation (cf. Béjar & Rezác 2009, Coon 2010). (See the appendix for an explicit proposal.)

(32) A-bar movement of DP_{erg} and DP_{abs} in Yucatec (Tonhauser (2007, 11)):
Maria-e' maax t-uy il-ah?
Maria-TOP who PERF-ERG.3 see-CMP
‘Maria, who does she see?’

7.2 The Bigger Picture

(33) Generalization:
Displacement of α is impossible if there is a step τ of the derivation, with X the current phase head, such that (a), (b), and (c) hold.
\[\begin{align*}
\text{a.} & \quad X \text{ c-commands } \beta, \text{ and } \beta \text{ needs some feature(s) } \delta \text{ from } X. \\
\text{b.} & \quad \text{Merge before Agree holds on the XP cycle.} \\
\text{c.} & \quad \alpha \text{ can take } \delta \text{ (but would not normally require it from } X) \text{ and needs to undergo movement via the edge of XP.}
\end{align*} \]

Two (possible) further instances of this effect:

- Movement of topics vs. underphrases from under-islands in German (Müller (2011, ch.5))
- Left Branch Condition effects

8. Appendix: Agent Focus

Question:
How can the external argument of a transitive verb be questioned, relativized or focussed?

Answer:
One possibility is to use the Agent Focus construction (AF).

8.1 Properties of Agent Focus in Mavan languages

Transitive verb, no AF

- Both arguments receive structural case.
• The verb agrees with DP_{int} and DP_{ext} in person and number. DP_{ext} is cross-referenced by set A- suffixes; DP_{int} and the sole argument of an intransitive verb are cross-referenced by set B-suffixes (ergative pattern).

• The verb carries the transitive status suffix (gloss: TV).

Transitive verb in the AF construction

• Both arguments receive structural case. There is no demotion of one of the arguments.
• AF is not a de-transitivizing operation (for arguments see the references in Aissen (1999)).

• The verb agrees with only one of the two arguments and cross-references this argument by the set B-suffixes. The choice of the agreement-triggering argument is regulated by language-specific rules.

• The verb carries the intransitive status suffix (gloss: itv).

• The AF-suffix attaches to the verb.

The AF construction is syntactically transitive, but morphologically intransitive.

(34) _Agent Focus in Yucatec (Tonhauser; 2007):_

a. aree ri acchi x-O-aa-ch’ay-o
 FOC the man PERF-3SG.ABS-2SG.ERG-hit-TV
 ‘It was the man that you hit.’ patient extraction without AF

b. aree ri at x-a-t’ch’ay-oow ri acchi
 FOC the you PERF-2SG.ABS-hit-AF the man
 ‘You were the one who hit the man.’ agent extraction with AF

(35) _Agent Focus in Qu’eqbal (Coon; 2010):_

a. Max-aach y-i-la
 AS PABS.2 ERG.3-skee-TV
 ‘She saw you.’

b. Max-aach way-i
 AS PABS.2 sleep-ITV
 ‘You slept’

transitive verb, no extraction

c. *Maktxel max-aach s-laq’-a’
 who AS PABS.2 ERG.3-hug-TV
 ‘Who hugged you?’

agent extraction without AF

d. Maktxel max-aach laq’on-i
 who AS PABS.2 hug-AF-ITV
 ‘Who hugged you?’

agent extraction with AF

Distribution of AF

• AF can only be used if an agent is to be extracted, it cannot be used in a regular transitive clause without extraction.

• AF cannot be used if a non-agent DP is extracted.

(36) _AF Restrictions in Tzotzil (Aissen; 1999:455):_

a. *I-kol-ta-on tzeb li Xun-e
 CP-hlp-AF girl the Juan-ENC
 ‘Juan helped the girl.’

b.??A li Xun-e, I-kol-ta-o li tzeb-e
 TO the Juan-ENC, CP-hlp-AF the girl-ENC
 ‘The girl helped Juan.’

8.2 Analysis of Agent Focus

We need to account for (i) the intransitive agreement, (b) the structural case assignment, (c) the extractability of DP_{int} and (d) the impossibility of extracting DP_{ext}.

Assumptions

• DP_{int} is assigned structural case by an added probe |c:ext| (Béjar & Rézác; 2009). This probe is realized by the AF-morpheme (cf. Coon (2010)).

• The probe is located below v. For concreteness, we assume that it is added to V (the AF morpheme is adjacent to the verbal root).

• An intransitive v is merged that does not assign |c:ext| (ergative case), but still introduces the external argument (this variant of v is independently needed to account for case assignment with unergatives). This accounts for the intransitive status suffix and intransitive agreement morphology.

• The feature content of T does not change, it still assigns |c:ext|.

The (non-)extractability of DP_{int} and DP_{ext}, respectively, follows automatically from the system developed in section 5.

(37) _Operations applying in the vP:_

\[
\begin{align*}
\left[\text{P DP}_{\text{ext}} \left[\left[c:\text{ext}\right]\right]\ \text{V}\left[\left[c:\text{ext}\right]\right]\ \text{VP} \left[\left[c:\text{ext}\right]\right]\ \text{DP}_{\text{int}} \left[\left[c:\text{ext}\right]\right]\right] \right]
\end{align*}
\]

\[
\begin{align*}
\text{AF: DP}_{\text{ext}} \text{Movement}
\end{align*}
\]

A case-assigning probe is added to V. Since V does not introduce a DP in its specifier, the case of V is assigned to the complement of V, i.e. to DP_{int}. DP_{ext} does not get case from v because the intransitive variant of v is merged (cf. (37)). Given the ranking Merge ≫ Agree on the TP cycle, DP_{ext} moves to SpecT. Afterwards, it is assigned [c:ext] by T due to the Specifier-Head Bias (cf. (38)). DP_{ext} can then be moved further to the left periphery. Since DP_{int} gets case early in the derivation from V and does not depend on the case assigned by T as in regular transitives, the derivation converges. Manøualage does not apply.

(38) [TP DP_{ext} \left[\left[c:\text{ext}\right]\right]] \left[\begin{align*}
\text{T} \left[\left[c:\text{ext}\right]\right]\text{P} \left[\left[c:\text{ext}\right]\right]\text{VP} \left[\left[c:\text{ext}\right]\right]\text{DP}_{\text{int}} \left[\left[c:\text{ext}\right]\right]\right]\right]
\end{align*}\]
AF: $*D_{\text{int}}$ Movement

D_{int} is assigned case by the added probe on V because V does not select a specifier that could compete for case assignment with D_{int}. D_{ext} is introduced in the specifier of v but does not receive case from the intransitive v (cf. (37)). Given the ranking Merge \gg Agree, D_{int} is moved to SpecT before T assigns case. Due to the Specifier-Head Bias, D_{int} gets $[\text{case}]$ from T in addition to the case $[\text{case}]$ it was assigned by the added probe on V. There is no case left which could be assigned to D_{ext} and hence, the derivation crashes (cf. (39)). This is exactly the reversed pattern of what we saw in the derivation of the ban on ergative movement in regular transitive: In AF, D_{int} marauds the case that D_{ext} would need; in regular transitives, D_{ext} marauds the case for D_{int}.

\begin{equation}
\begin{array}{c}
\text{(iii) Merge} \\
\text{(iv) Agree}
\end{array}
\end{equation}

It is still an open question why AF can only be applied if an element is extracted.

References

(Talk at the Repairs Workshop of the DGS conference 2009, Osnabrück, and at the Potsdam/Leipzig Workshop on Movement and Morphology, Leucoea, April 2009).
Müller, Gereon (2011): Constraints on Displacement. A Phase-Based Approach. Vol. 7 of Language Faculty and Beyond, Benjamins, Amsterdam.

21

22