Ergatives move too early

Claim: We claim that the inability of ergative arguments (DP_{erg}) to undergo A-movement (wh-movement, focussing, relativization) in many morphologically ergative languages should not be brought about by restrictions on the movement of ergative DPs. Rather, we argue that movement of the ergative argument is not prohibited per se but if it applies, it applies too early, thereby undermining case assignment to the absolutive argument (DP_{abs}). As a consequence, the derivation crashes.

Background & Data: It has been noted in the literature that in many ergative languages DP_{erg} cannot be A-moved, in contrast to DP_{abs}, cf. (1).

(1) Katukina-Kanamari—Wh-Movement (Queixalos 2010)
 a. hanian tu Nodia nah=hoho-nin? whom Q Nodia ERG=call-DURATIVE
 ‘Whom is Nodia calling?’
 b. *hanian who tan dyuman tahi yu? who here spread water Q
 ‘Who spread water here?’

There are at least two possible analyses: (i) The trace of DP_{erg} is not licensed (e.g. in GB terms, it is not strictly governed); (ii) (covert) movement of DP_{abs} blocks movement of DP_{erg}, either due to minimality (Campana 1992), or DP_{abs} blocks the only escape hatch within vP (Aldridge 2004, Coon 2010). Both approaches suffer from technical and empirical problems. As for (i), constraints on traces cannot be formulated in the Minimalist framework. As for (ii), Campana’s analysis is based on a non-standard concept of intervention while Aldridge (2004) and Coon (2010) must stipulate a ban on multiple specifiers. All three accounts must resort to covert movement of DP_{abs}, which is hardly motivated on independent grounds. Empirically, the analyses in (ii) make the wrong prediction that DP_{abs} not only blocks movement of DP_{erg} but also movement of other vP-internal elements like adjuncts or obliques (2). They also predict that similar movement asymmetries between coarguments should be found in nominative-accusative languages, contrary to fact.

(2) Mam —Wh-Movement of Passive Agent (England 1983)
 al u?n xhi kub’ tzy-eet qa-cheej? By whom were the horses grabbed?
 Q RN DEP-3PL.ABS DIR GRAB-pass PL-horse

Assumptions: [A1] Following Müller (2009), we assume that (i) case is assigned under Agree, (ii) in all languages, T assigns unmarked case (NOM/ABS) and v marked case (ERG/ACC), (iii) the only difference between accusative and ergative case systems is the order in which the basic operations Merge and Agree apply within vP. Since v triggers two operations (it assigns case and selects an external argument), languages must give preference either to Agree or Merge, given Earliness (Pesetsky 1989) and the tenet that operations cannot apply simultaneously. [A2] Instead of minimality, we assume a Specifier-Head-Bias (SHB) which states that agreement between a head and its specifier is preferred to agreement between a head and an element its c-command domain (Chomsky 1986, 1995, Koopman 2006; see Béjar & Řezáč 2009 for a similar idea with a bias inverted). The SHB is compatible with equi-distance effects, which pose a problem for path-based definitions of minimality. [A3] Movement to SpecCP must make an intermediate stop in SpecTP. This is ensured by assuming that either TP is a phase (Richards 2011), any XP is a phase (Müller 2010) or strict locality (Chomsky 2005). [A4] Edge features on phase heads are freely available (Chomsky 2000). [A5] Arguments may receive more than one case (cf. approaches to case stacking: Andrews 1996, Nordlinger 1998, Richards 2007). [A6] Agree is not sensitive to the PIC (see e.g. Boškovič 2007).

Analysis: In ergative languages, preference is given to Merge over Agree with the result that v first selects the external argument (DP_{ext}) before it assigns case. Due to the SHB, the marked case of v ends up on its specifier while the internal argument (DP_{int}) receives case from T,
given [A6]. In accusative languages, preference is given to Agree over Merge, such that v has to assign case to DP_{int} before Merge of DP_{ext}, which in turn receives case from T (cf. Müller 2009). Now, on the T head, the same indeterminacy as on v arises: it assigns case and must have an edge feature if one argument is to undergo Â-movement. Assuming that the language-specific order of operations remains constant throughout the derivation, we can derive the ban on ergative movement and the asymmetry between ergative and accusative languages, considering two different derivations: [D1] DP_{ext} has an additional [wh]-feature and moves to an operator position in the left periphery via SpecTP ([A3]; [A4]) to check this feature; [D2] DP_{int} has a [wh]-feature and moves to an operator position. As for [D1], in accusative languages DP_{int} has received accusative within vP. DP_{ext} receives case via Agree as soon as T is merged because Agree is preferred over Merge. Afterwards, DP_{ext} is free to move and check the edge feature on T. In ergative languages, DP_{ext} receives case within the vP; DP_{int} remains unvalued. As soon as T is merged, it first attracts DP_{ext} to satisfy its edge feature (preference for Merge over Agree). Due to the SHB ([A2]), DP_{ext} checks case on T ([A5]) with the result that DP_{int} does not receive any case. The derivation crashes because DP_{ext} has absorbed the case features provided for DP_{int}. As for [D2], in accusative languages, DP_{int} receives its case from v while DP_{ext} is still unvalued. When T enters the structure, it first assigns case to DP_{ext} before it attracts DP_{int} to its specifier (preference for Agree). Thus, the context for multiple case-checking does not arise in the first place. In ergative languages, DP_{int} is attracted to SpecTP where it receives its case due to the SHB while DP_{ext} receives case from v. The derivation converges. In summary, out of the four derivations in which one argument is extracted, three derivations converge. Only the derivation in which DP_{ext} in an ergative language is extracted is ungrammatical because DP_{erg} moves before T has assigns case to DP_{abs}. Hence, ergatives move too early.

Conclusion: The present analysis has several advantages: (i) It captures the intuition by Polinsky et al (2011) that movement of DP_{erg} is not problematic per se but leads to a problem for the identification of DP_{abs}. (ii) It is not forced to assume unmotivated covert movement steps of the absolutive. (iii) It avoids stipulations about the different nature of ergative and accusative syntax. One parameter, namely the ordering of Merge and Agree, derives the difference in argument encoding as well as the difference that there is a movement asymmetry between coarguments in ergative but not in accusative languages. (iv) It is empirically superior to other existing theories because it makes the correct prediction that in languages which exhibit a ban on movement of the ergative other elements like adjuncts, passive agents and obliques are still free to move (cf. (2)). It should also be clear that our analysis implies a strictly derivational syntax in which the order of operations plays an important role in deriving properties of the grammar.

Outlook: Finally, we address the related question of why not all ergative languages instantiate a ban on ergative movement and discuss several possible answers: (i) The order of operations on T differs from the order on v. (ii) T is not a phase head. (iii) DPs cannot check multiple case features. Furthermore, we examine repair strategies for the ban on ergative movement such as antipassive or agent focus (Stiebels 2006, Aissen 1999). We argue that the agent focus morpheme is the morphological realization of an added probe which assigns case to DP_{int}, thereby preventing a crash of the derivation (cf. Béjar & Řezáč 2009, Coon 2010).