Abstract (counter-)bleeding pattern:

(7) Bleeding: ϕ-Agreement in intermediate landing site:

\[
\text{XP} \xrightarrow{\text{[φ][-26c]}} H
\]

\[
\text{H} \xrightarrow{\text{[φ][+c]}} \text{YP}
\]

intermediate IM of XP applies after Agree. XP is in the c-command domain of H when it probes; the ϕ-probe on H finds a goal and is valued

(8) Counter-Bleeding:

$$
\text{XP} \xrightarrow{\text{[φ][-26c]}} H
\]

\[
\text{H} \xrightarrow{\text{[φ][-c]}} \text{YP}
\]

\[
\text{XP} \xrightarrow{\text{[φ][-26c]}} H
\]

\[
\text{H} \xrightarrow{\text{[φ][+c]}} \text{YP}
\]

Evidence for ordering of elementary operations:

- strict ordering on some heads: e.g. van Koppen (2005); Brdar and Rezaei (two other examples: 2012); Assmann and Heck (2012).
- variable order derives cross-linguistic variation: see Müller (2004); Lahne (2006a,b); 7; Assmann et al. (2012).

- Assumption: the order of operation-inducing features on a head is fixed, determined language-specifically.

I.3 Rule interaction in the present data:

- A head H triggers Agree (or $φ$-occur) and internal Merge: $H \xrightarrow{[φ][-c]} H$.
- Sometimes the XP moved to SpecH feeds Agree by H; sometimes it has the opposite effect in that position (counter-bleeding/feeding), cf. 14, (5).

- Condition: movement type; intermediate vs. final movement step to SpecC.
- If SpecC is an intermediate landing site for XP (IM triggered by an edge feature $[φ][+c]$), counter-bleed/travel Agree: if SpecC is the final position of a movement chain (IM triggered by other features) it feeds Agree.

- Pattern: Intermediate movement of XP to SpecH behaves as if the XP is not moved at all after. Agree; final movement to SpecC pattern differently.

- Movement to SpecC uses SpecC as an intermediate landing site.

2 Assumptions:

- Clause structure ϕ-C: [z][T,LP][DP,v][v][V,DP][C$]$$
- The structure is built up incrementally in a bottom-up fashion.
- All operations are feature-driven: Agree is triggered by probe features ($φ$-v).
- Merge is triggered by structure-building features $[φ][w]$.
- Intermediate move steps are triggered by edge features $[φ][w]$.
- Agree (Chomsky 2000, 7): A probe P on a head H searches for the closest goal G in its c-command domain. G values $P \equiv (P_0 \equiv G)$; $P \equiv G$ (case).
- A default value is inserted if Agree fails (cf. Brdar (2003); Preminger (2011)): $φ$-Agree: $\{3sg\}$, case Agree: $\{c:nom\}$.
- Traces/copies are not visible for Agree.

Activity Condition holds (7): A DP that has received a case value cannot be the goal for an Agree relation.

Analysis:

- Assumption: subject-verb agreement in AAE languages is mediated by C (cf. Dual (2008); Henderson (2009)).
- Reason: Short and long movement can be distinguished by the nature of their trigger on the minimal C head. SpecC = intermediate or final landing site.
- Short $Ά$-movement is a final movement step triggered by $[φ][-c]$ on the local SpecC.
- Long-distance $Ά$-movement uses the local SpecC only as an intermediate landing site and is triggered by an edge-feature; it applies after Agree.

Consequence: Short (final) movement applies too early, the goal of the $φ$-probe on C is moved out of C’s c-command domain and thus bleeds full agreement. A DP that is to undergo long-$Ά$-movement is still in the c-command domain of C when $[φ][+c]$ on C probes.

10) Order of features on C: $\{φ\} \equiv \{[φ][-26c] \equiv [φ][+c]\}$

Derivations:

(11) No $Ά$-extraction of the subject DP. ϕ-probe discharged $\{[φ][+c] \equiv [φ][-c]\}$, no extr. full $φ$-agree

(12) Local $Ά$-extraction of the subject DP:
- Step 1: Movement of the subject to SpecC. $φ$-probe discharged $\{[φ][+c] \equiv [φ][-c]\}$, no extr. full $φ$-agree

(13) Long $Ά$-extraction of the subject DP:
- Step 1: $φ$-Agree initiated by C, $φ$-probe discharged $\{[φ][+c] \equiv [φ][-c]\}$, no extr. full $φ$-agree

More evidence from variation for SpecC as an intermediate landing site:

- Alternative analysis of the AAE: Long $Ά$-Extraction does not make a stop-over in the minimal SpecC position but moves directly to the matrix SpecC.
- However, this assumption causes problems for languages in which both long and short $Ά$-movement bleeds Agree (e.g. Fiorentino, Tsimin, cf. Brandt and Cordin (1994)). Long movement should not cause bleeding in these languages, contrary to fact.
- Possible solution: Long $Ά$-Movement makes a stop-over in the minimal SpecC in some languages (Tsimin type), but not in others (Berber type).
- Alternative proposal: Long $Ά$-movement always goes through the local SpecC (and the AAE data are thus opaque). Variation is straightforwardly accounted for by resordering of operation-inducing features, cf. (10) vs. (14).

14) Order of features on C in Tsimin type languages: $\{ φ\} \equiv \{[φ][-26c] \equiv [φ][+c]\}$
3.2 (Counter-feeding: Interaction effects in Icelandic B

Agreement pattern

- A agrees between T and a lower subject DP is blocked by an interesting experience (defective intervention); only default agreement is possible, see (15-a).
- Exp-movement to SpecT feeds full Agree between T and the DP, see (15-b).
- However, when-movement of Exp counts-fails Agree; only default agreement is possible although Exp does not intervene on the surface, see (15-c).

(15) Raising constructions in Icelandic (Holmberg and Hrörsdóttir 2001)

a.

b.

It seems to me that the horses are slow.

 OTP

\(n' \)

\(n \)