Stefan Berger’s Home Page


 Fakultät für Chemie und Mineralogie
Institut für Analytische Chemie


    D - 04103 Leipzig,  Linnéstr 3
    (Post: Johannisallee 29)

    Tel.:    +49 341- 3016950 (private)


“100 and More Basic NMR Experiments”

ISBN: 3-527-29091-5, VCH, Weinheim , 1996

 Contents  and => Known Bugs

  • Chapter 1 : The NMR Spectrometer

    1.1     Principles of an NMR Spectrometer
    1.1.1   The Magnet
    1.1.2   The Spectrometer Console
    1.1.3   The Work-Station
    1.1.4   Maintenance
    1.2     Tuning a Probe-Head
    1.2.1   Tuning and Matching with a Reflection Meter
    1.2.2   Tuning and Matching with an R.F. Bridge and an Oscilloscope
    1.2.3   Tuning and Matching with a Wobble Generator
    1.3     The Lock Channel
    1.4     The Art of Shimming
    1.4.1   The Shim Gradients
    1.4.2   The Shimming Procedure

  •  Chapter 2 Determination of the Pulse-Length

    Exp. 2.1:       Determination of the 90  1H Transmitter Pulse-Length
    Exp. 2.2:       Determination of the 90  13C Transmitter Pulse-Length
    Exp. 2.3:       Determination of the 90  1H Decoupler Pulse-Length
    Exp. 2.4:       The 90  1H Pulse with Inverse Spectrometer Configuration
    Exp. 2.5:       The 90 13C Decoupler Pulse with Inverse Configuration
    Exp. 2.6:       Determination of Radiofrequency Power
  •  Chapter 3 Routine NMR Spectroscopy and Standard Tests

    Exp. 3.1:       The Standard 1H NMR Experiment
    Exp. 3.2:       The Standard 13C NMR Experiment     
    Exp. 3.3:       Line-Shape Test for 1H NMR Spectroscopy
    Exp. 3.4:       Resolution Test for 1H NMR Spectroscopy
    Exp. 3.5:       Sensitivity Test for 1H NMR Spectroscopy
    Exp. 3.6:       Line-Shape Test for 13C NMR Spectroscopy
    Exp. 3.7:       ASTM Sensitivity Test for 13C NMR Spectroscopy
    Exp. 3.8:       Sensitivity Test for 13C NMR Spectroscopy
    Exp. 3.9:       Quadrature Image Test
    Exp. 3.10:      Dynamic Range Test for Signal Amplitudes
  •  Chapter 4 Decoupling Techniques

    Exp. 4.1:       Decoupler Calibration for Homonuclear Decoupling
    Exp. 4.2:       Decoupler Calibration for Heteronuclear Decoupling
    Exp. 4.3:       Low Power Calibration for Heteronuclear Decoupling
    Exp. 4.4:       Homonuclear Decoupling
    Exp. 4.5:       The Homonuclear SPT Experiment
    Exp. 4.6:       The Heteronuclear SPT Experiment
    Exp. 4.7:       1D Nuclear Overhauser Difference Spectroscopy
    Exp. 4.8:       1D NOE Spectroscopy with Multiple Selective Irradiation
    Exp. 4.9:       1H Off-Resonance Decoupled 13C NMR Spectra
    Exp. 4.10:      The Gated 1H-Decoupling Technique
    Exp. 4.11:      The Inverse Gated 1H-Decoupling Technique
    Exp. 4.12:      1H Single Frequency Decoupling of 13C NMR Spectra
    Exp. 4.13:      1H Low-Power Decoupling of 13C NMR Spectra
    Exp. 4.14:      Measurement of the Heteronuclear Overhauser Effect
  •  Chapter 5 Dynamic NMR Spectroscopy

    Exp. 5.1:       Low Temperature Calibration with Methanol
    Exp. 5.2:       High Temperature Calibration with 1,2-Ethanediol
    Exp. 5.3:       Dynamic 1H NMR Spectroscopy on Dimethylformamide
    Exp. 5.4:       The Saturation Transfer Experiment
  •  Chapter 6   1D Multipulse Sequences

    Exp. 6.1:       Measurement of the Spin-Lattice Relaxation Time T1
    Exp. 6.2:       Measurement of the Spin-Spin Relaxation Time T2
    Exp. 6.3:       Editing 13C NMR Spectra with SEFT
    Exp. 6.4:       Editing 13C NMR Spectra with APT
    Exp. 6.5:       The Basic INEPT Technique
    Exp. 6.6:       INEPT+Exp. 6.7:       Refocused INEPT
    Exp. 6.8:       Reverse INEPT
    Exp. 6.9:       Editing 13C NMR Spectra with DEPT
    Exp. 6.10:      Editing 13C NMR Spectra with PENDANT
    Exp. 6.11:      1D-INADEQUATE
    Exp. 6.12:      The BIRD Filter
    Exp. 6.13:      TANGO
    Exp. 6.14:      The Heteronuclear Double Quantum Filter
    Exp. 6.15:      Water Suppression by Presaturation
    Exp. 6.16:      Water Suppression by the Jump and Return Method

  •  Chapter 7  NMR Spectroscopy with Selective Pulses

    Exp. 7.1:       Determination of a Shaped 90 1H Transmitter Pulse
    Exp. 7.2:       Determination of a Shaped 90  1H Decoupler Pulse
    Exp. 7.3:       Determination of a Shaped 90  13C Decoupler Pulse
    Exp. 7.4:       Selective Excitation with DANTE
    Exp. 7.5:       Selective COSY
    Exp. 7.6:       SELINCOR: Selective Inverse H,C Correlation via 1J(C,H)
    Exp. 7.7:       SELINQUATE
    Exp. 7.8:       Selective TOCSY
    Exp. 7.9:       INAPT
    Exp. 7.10:      Determination of Long Range C,H Coupling Constants
    Exp. 7.11:      SELRESOLV
    Exp. 7.12:      SERF

  •  Chapter 8 Auxiliary Reagents, Quantitative Determinations, and Reaction Mechanism

    Exp. 8.1:       Signal Separation Using a Lanthanide Shift Reagent
    Exp. 8.2:       Signal Separation of Enantiomers Using a Chiral Shift Reagent
    Exp. 8.3:       Signal Separation of Enantiomers Using a Chiral Solvating Agent
    Exp. 8.4:       Determination of Enantiomeric Purity with Pirkle's Reagent     
    Exp. 8.5:       The Relaxation Reagent Cr(acac)3
    Exp. 8.6:       Quantitative 1H NMR Spectroscopy: Determination of the Alcohol Content of Polish Vodka
    Exp. 8.7:       Quantitative 13C NMR Spectroscopy with Inverse Gated1H-Decoupling
    Exp. 8.8:       Determination of Paramagnetic Susceptibility by NMR
    Exp. 8.9:       The CIDNP Effect

  •  Chapter 9 Heteronuclear NMR Spectroscopy

    Exp. 9.1:       1H-Decoupled 15N NMR Spectra with DEPT
    Exp. 9.2:       1H-Coupled 15N NMR Spectra with DEPT
    Exp. 9.3:       19F NMR Spectroscopy
    Exp. 9.4:       29Si NMR Spectroscopy with DEPT
    Exp. 9.5:       119Sn NMR Spectroscopy
    Exp. 9.6:       2H NMR Spectroscopy
    Exp. 9.7:       11B NMR Spectroscopy
    Exp. 9.8:       17O NMR Spectroscopy with RIDE
  •  Chapter 10 The Second Dimension

    Exp. 10.1:      2D J-Resolved 1H NMR Spectroscopy
    Exp. 10.2:      2D J-Resolved 13C NMR Spectroscopy
    Exp. 10.3:      The Basic H,H-COSY Experiment
    Exp. 10.4:      Long-Range COSY
    Exp. 10.5:      Phase-Sensitive COSY
    Exp. 10.6:      Phase-Sensitive COSY-45
    Exp. 10.7:      Double Quantum Filtered COSY with Presaturation
    Exp. 10.8:      C,H Correlation by Polarization Transfer (HETCOR)
    Exp. 10.9:      Long-Range C,H Correlation by Polarization Transfer
    Exp. 10.10:     C,H Correlation via Long-Range Couplings (COLOC)
    Exp. 10.11:     The Basic HMQC Experiment
    Exp. 10.12:     Phase-Sensitive HMQC with BIRD Selection and  GARP Decoupling
    Exp. 10.13:     Phase-Sensitive HMBC with BIRD Selection
    Exp. 10.14:     The Basic HSQC Experiment
    Exp. 10.15:     The HOHAHA or TOCSY Experiment
    Exp. 10.16:     The NOESY Experiment
    Exp. 10.17:     The CAMELSPIN or ROESY Experiment
    Exp. 10.18:     The HOESY Experiment
    Exp. 10.19:     2D-INADEQUATE
    Exp. 10.20:     The EXSY Experiment

  •  Chapter 11 NMR Spectroscopy with Pulsed Field Gradients

    Exp. 11.1:      Calibration of Pulsed Field Gradients
    Exp. 11.2:      The Pulsed Gradient Spin-Echo Experiment
    Exp. 11.3:      Gradient-Selected H,H-COSY
    Exp. 11.4:      Gradient-Selected Phase-Sensitive DQF COSY
    Exp. 11.5:      Gradient-Selected HMQC
    Exp. 11.6:      Gradient-Selected HMBC
    Exp. 11.7:      Phase-Sensitive Gradient-Selected HSQC
    Exp. 11.8:      Gradient-Selected TOCSY
    Exp. 11.9:      Gradient-Selected HMQC-TOCSY
    Exp. 11.10:     Gradient-Selected 1H-Detected 2D INEPT-INADEQUATE
    Exp. 11.11:     Gradient-Selected SELINCOR
    Exp. 11.12:     GRECCO
    Exp. 11.13:     WATERGATE

  •  Chapter 12 The Third Dimension

    Exp. 12.1:      3D HMQC-COSY
    Exp. 12.2:      3D Gradient-Selected HSQC-TOCSY
    Exp. 12.3:      3D H,C,P-Correlation

    => back top

Known Bugs:

  • page 3, line 4 from bottom:  change "ms" into "microseconds"!
  • page 56: Correct citation of Günthers Book in ref [1] see page 34, ref [4]
  • page 155 second line: change to "p2, p4: 180 "
  • page 158, line 8 from bottom: change "C-3" into  "C-4"
  • page 167, phase cycle for acquisition shoud read x, -x,-x, x, -x, x, x, -x
  • page 173: change phase program for p2 to " -x, -x, x, x, -y, -y, y, y" and for aq to “ x,x, -x, -x, y, y, -y, -y"
  • page 196: change in parameter list d2 to "1/[4J(C.,C)]"
  • page 210: add in parameter list "p4: 90  13C decoupler pulse"
  • page 237: In ref. [1] change publication year from "1958" into "1959"
  • page 270: first line of pulse phases: change "p4" into "p5"
  • page 272, line 4 from top: change "independent" into "dependent"
  • page 289 and page 292: phase cycle for p2, change to x, -x, x, -x, y, -y, y, -y
  • page 295: phase cycle for p4, change to y, -x, -y, x, -x, -y, x, y
  • page 351, line 6 from top: change "have not diffused" into "have diffused"
  • page 375, line 2 from top change "IH" into IH with superscript minus
  • page 399: parameter list: d2: change 1/[2J(C,H) into 1/[4J(C,H)]
              increment for t2 evolution: change 1/[2sw2] into 1/sw2
  • page 403: change time requirements into 6h
              add as second sentence: "Use appropriate pass and stop r.f. filters
              in all three channels"

              parameter list: d2: change 145 Hz into 160 Hz increment for t2

              evolution 1/[2sw2] into 1/[4sw2]

              add: "preacquisition delay as short as possible"
  • page 406: 7th column, first row: add for Jeol instrument: "Alpha", "Lambda"
              7th column, second row:add for Jeol Computer: "VAX Alpha AXP"
  • page 407: parameter "pulse width": change the Jeol entry "Pwx" into "PWx"
              parameter "delay": change the Jeol entry "Pix" into "PIx"
              parameter "preacquisition delay": change the Varian entry "pad" into "rof2"
  • page 408: second row of table: remove the Varian entries "ni"

  Some of these errors have been corrected in the first reprint. Many thanks
  to all collegues who pointed our attention to these problems.

back top