|
“150 and More Basic NMR Experiments”
Chapter 1 The NMR Spectrometer
1.1 Principles of an NMR
Spectrometer 1.1.1 The Magnet 1.1.2 The Spectrometer
Console 1.1.3 The Workstation 1.1.4 Maintenance
1.2 Tuning a Probe-Head 1.2.1 Tuning and Matching with a Reflection
Meter 1.2.2 Tuning and Matching with an R.F. Bridge and an Oscilloscope 1.2.3 Tuning and Matching
with a Wobble Generator 1.3 The Lock Channel 1.4 The Art of Shimming 1.4.1
The Shim Gradients 1.4.2 The Shimming Procedure 1.4.3 Gradient Shimming
- Chapter 2 Determination of the Pulse-Duration
Exp. 2.1: Determination of the 90&; 1H Transmitter
Pulse-Duration Exp. 2.2: Determination of the 90&; 13C Transmitter Pulse-Duration Exp. 2.3:
Determination of the 90&; 1H Decoupler Pulse-Duration Exp. 2.4: The 90&; 1H Pulse with Inverse Spectrometer
Configuration Exp. 2.5: The 90&; 13C Decoupler Pulse with Inverse Configuration Exp. 2.6: Composite
Pulses Exp. 2.7: Radiation
Damping Exp. 2.8: Pulse and Receiver
Phases Exp. 2.9:
Determination of Radio Frequency Power
- Chapter 3 Routine NMR Spectroscopy and Standard Tests
Exp. 3.1: The Standard 1H NMR
Experiment Exp. 3.2: The Standard 13C NMR
Experiment Exp. 3.3: The Application of Window Functions Exp. 3.4:
Computer-aided Spectral Analysis Exp. 3.5: Line-Shape Test for 1H NMR
Spectroscopy Exp. 3.6: Resolution Test for 1H NMR Spectroscopy Exp. 3.7: Sensitivity
Test for 1H NMR Spectroscopy Exp. 3.8: Line-Shape Test for 13C NMR
Spectroscopy Exp. 3.9 ASTM Sensitivity Test for 13C NMR
Spectroscopy Exp. 3.10: Sensitivity Test for 13C NMR Spectroscopy Exp. 3.11: Quadrature Image
Test Exp. 3.12: Dynamic Range Test for Signal Amplitudes Exp.
3.13: 13&; Phase Stability Test
- Chapter 4 Decoupling Techniques
Exp. 4.1: Decoupler Calibration for Homonuclear
Decoupling Exp. 4.2: Decoupler Calibration for Heteronuclear Decoupling Exp. 4.3: Low Power Calibration for Heteronuclear
Decoupling Exp. 4.4: Homonuclear Decoupling Exp. 4.5: Homonuclear Decoupling at Two
Frequencies Exp. 4.6: The Homonuclear SPT
Experiment Exp. 4.7: The Heteronuclear SPT
Experiment Exp. 4.8: 1D Nuclear Overhauser Difference
Spectroscopy Exp. 4.9: 1D NOE Spectroscopy with Multiple Selective
Irradiation Exp. 4.10: 1H Off-Resonance Decoupled 13C NMR
Spectra Exp. 4.11: The Gated 1H-Decoupling
Technique Exp. 4.12: The Inverse Gated 1H-Decoupling Technique Exp. 4.13: 1H Single Frequency Decoupling of 13C
NMR Spectra Exp. 4.14: 1H Low-Power Decoupling of 13C NMR Spectra Exp. 4.15: Measurement of the Heteronuclear
Overhauser Effect
- Chapter 5 Dynamic NMR Spectroscopy
Exp. 5.1: Low Temperature Calibration with
Methanol Exp. 5.2: High Temperature Calibration with 1,2-Ethanediol Exp. 5.3: Dynamic
1H NMR Spectroscopy on Dimethylformamide Exp. 5.4: The Saturation Transfer Experiment Exp. 5.5: Measurement of the
Rotating Frame Relaxation Time T1r
- Chapter 6 1D Multipulse Sequences
Exp. 6.1: Measurement of the
Spin-Lattice Relaxation Time T1 Exp. 6.2: Measurement of the Spin-Spin Relaxation Time T2 Exp.
6.3: 13C NMR Spectra with SEFT Exp. 6.4: 13C NMR Spectra with APT Exp. 6.5: The Basic INEPT
Technique Exp. 6.6: INEPT+ Exp. 6.7: Refocused INEPT Exp.
6.8: Reverse INEPT Exp. 6.9: DEPT-135 Exp. 6.10: Editing 13C NMR Spectra
with DEPT Exp. 6.11: Multiplicity Determination with PENDANT Exp. 6.12:
1D-INADEQUATE Exp. 6.13: The BIRD Filter Exp. 6.14: TANGO Exp. 6.15: The Heteronuclear Double Quantum
Filter Exp. 6.16: Purging with a Spin-Lock Pulse Exp. 6.17: Water Suppression by
Presaturation Exp. 6.18: Water Suppression by the Jump and Return Method
- Chapter 7 NMR Spectroscopy with Selective Pulses
Exp. 7.1: Determination of
a Shaped 90&; 1H Transmitter Pulse Exp. 7.2: Determination of a Shaped 90&; 1H Decoupler
Pulse Exp. 7.3: Determination of a Shaped 90&; 13C Decoupler Pulse Exp. 7.4:
Selective Excitation with DANTE Exp. 7.5: SELCOSY Exp. 7.6: SELINCOR: Selective Inverse H,C Correlation via 1J(C,H)
Exp. 7.7: SELINQUATE Exp. 7.8: Selective TOCSY Exp. 7.9: INAPT Exp. 7.10: Determination of
Long-Range C,H Coupling Constants Exp. 7.11: SELRESOLV Exp. 7.12: SERF
- Chapter 8 Auxiliary Reagents, Quantitative Determinations,
and Reaction Mechanisms
Exp.
8.1: Signal Separation Using a Lanthanide Shift Reagent Exp. 8.2: Signal Separation of Enantiomers Using a Chiral Shift Reagent
Exp. 8.3: Signal Separation of Enantiomers Using a Chiral Solvating Agent Exp. 8.4: Determination of Enantiomeric Purity with Pirkle's Reagent
Exp. 8.5: Determination of Enantiomeric Purity by 31P NMR Exp. 8.6: Determination of Absolute Configuration by the Advanced Mosher
Method
Exp. 8.7: Aromatic Solvent-Induced Shift (ASIS) Exp. 8.8: NMR Spectroscopy of OH-Protons and H/D Exchange Exp. 8.9: Isotope
Effects on Chemical Shielding Exp. 8.10: pKa Determination with 13C NMR Exp. 8.11: The Relaxation Reagent
Cr(acac)3 Exp. 8.12: Determination of Paramagnetic Susceptibility by NMR Exp. 8.13: 1H and 13C NMR of
Paramagnetic Compounds Exp. 8.14: The CIDNP Effect Exp. 8.15: Quantitative 1H NMR Spectroscopy: / Determination of the Alcohol
Content of Polish Vodka Exp. 8.16: Quantitative 13C NMR Spectroscopy with Inverse Gated
1H-Decoupling Exp. 8.17: NMR Using Liquid-Crystal
Solvents
- Chapter 9 1D Heteronuclear NMR Spectroscopy
Exp. 9.1: 1H-Decoupled 15N NMR Spectra with
DEPT Exp. 9.2: 1H-Coupled 15N NMR Spectra with DEPT Exp. 9.3: 19F NMR
Spectroscopy Exp. 9.4: 29Si NMR Spectroscopy with DEPT Exp.
9.5: 29Si NMR Spectroscopy with Spin-Lock Polarization Exp. 9.6: 119Sn NMR Spectroscopy Exp. 9.7: 2H NMR
Spectroscopy Exp. 9.8: 11B NMR Spectroscopy Exp. 9.9: 17O NMR Spectroscopy with
RIDE Exp. 9.10 47/49Ti NMR Spectroscopy with ARING
- Chapter 10 The Second Dimension
Exp. 10.1: 2D J-Resolved 1H NMR Spectroscopy Exp. 10.2: 2D J-Resolved 13C NMR
Spectroscopy Exp. 10.3: The Basic H,H-COSY Experiment Exp. 10.4: Long-Range COSY
Exp. 10.5: Phase-Sensitive COSY Exp. 10.6: Phase-Sensitive COSY-45 Exp. 10.7: E.COSY Exp.
10.8: Double Quantum Filtered COSY with Presaturation Exp. 10.9: Fully Coupled C,H Correlation (FUCOUP) Exp. 10.10: C,H
Correlation by Polarization Transfer (HETCOR) Exp. 10.11: Long-Range C,H Correlation by Polarization
Transfer Exp. 10.12: C,H Correlation via Long-Range Couplings (COLOC) Exp. 10.13: The Basic
HMQC Experiment Exp. 10.14: Phase-Sensitive HMQC with BIRD Filter and GARP Decoupling Exp. 10.15: Poor Man's
Gradient HMQC Exp. 10.16: Phase-Sensitive HMBC with BIRD Filter Exp. 10.17: The Basic HSQC
Experime Exp. 10.18: The HOHAHA or TOCSY Experiment Exp. 10.19: The NOESY Experiment Exp.
10.20: The CAMELSPIN or ROESY Experiment Exp. 10.21: The HOESY Experiment Exp. 10.22: 2D-INADEQUATE
Exp. 10.23: The EXSY Experiment Exp. 10.24: X,Y Correlation
- Chapter 11 1D NMR Spectroscopy with Field Gradients
Exp. 11.1: Calibration of Pulsed Field
Gradients Exp. 11.2: Gradient Preemphasis Exp. 11.3: Gradient Amplifier
Test Exp. 11.4: Determination of Pulsed Field Gradient Ring-Down Delays Exp. 11.5: The Pulsed
Gradient Spin-Echo Experiment Exp. 11.6: Excitation Pattern of Selective Pulses Exp. 11.7: The Gradient zz-Filter
Exp. 11.8: gs-SELCOSY Exp. 11.9: gs-SELTOCSY Exp. 11.10: DPFGSE-NOE Exp. 11.11:
gs-SELINCOR Exp. 11.12: GRECCO Exp. 11.13: WATERGATE Exp. 11.14: Water
Supression by Excitation Sculpting
- Chapter 12 2D NMR Spectroscopy with Field Gradients
Exp. 12.1:
gs-COSY Exp. 12.2: Phase-Sensitive gs-DQF-COSY Exp. 12.3: gs-HMQC Exp. 12.4:
gs-HMBC Exp. 12.5: ACCORD-HMBC Exp. 12.6: Phase-Sensititive gs-HSQC with Sensitivity
Enhancement Exp. 12.7: gs-TOCSY Exp. 12.8: gs-HMQC-TOCSY Exp. 12.9:
2Q-HMBC Exp. 12.10: 1H-Detected 2D INEPT-INADEQUATE Exp. 12.11: gs-NOESY Exp. 12.12:
gs-HSQC-NOESY Exp. 12.13: gs-HOESY Exp. 12.14: 1H,15N Correlation with gs-HMQC
- Chapter 13 The Third Dimension
Exp. 13.1: 3D
HMQC-COSY Exp. 13.2: 3D gs-HSQC-TOCSY Exp. 13.3: 3D
H,C,P-Correlation Exp. 13.4: 3D HMBC
- Chapter 14 Solid-State NMR Spectroscopy
Exp. 14.1: Shimming Solid-State Probe-Heads Exp. 14.2:
Adjusting the Magic Angle Exp. 14.3: Hartmann-Hahn Matching Exp. 14.4: The
Basic CP/MAS Experiment Exp. 14.5: TOSS Exp. 14.6:
SELTICS Exp. 14.7: Multiplicity Determination in the Solid-State
Appendix
1 Instrument Dialects
Appendix
2 Elementary Product Operator Formalism Rules
Glossary and
Index
Known Bugs
- page 267: MgSO4 instead of Mg2SO4
- page 524: missing phase cycle:
p1: x, -x p2: x, x, -x, -x p3, p4: x, y, x, y, -x, -y, -x, -y p5: x aq: x, -x, -x, x
- wrong gradient strengths: have to be 0.1 T /m (instead of 0.01 T/m)
on most pages (434, 437, 440, 447, 450, 453, 457, 460, 465, 478, 482, 486, 490, 494, 498, 502, 507, 510, 514, 521,
529, 539, 547)
back top
|