Stefan Berger’s Home Page


 Fakultät für Chemie und Mineralogie
Institut für Analytische Chemie


    D - 04103 Leipzig,  Linnéstr 3
    (Post: Johannisallee 29)

    Tel.:    +49 341- 3016950 (private)


“150 and More Basic NMR Experiments”


Contents  ==> Bugs


Chapter 1  The NMR Spectrometer          

1.1     Principles of an NMR Spectrometer   
1.1.1   The Magnet           
1.1.2   The Spectrometer Console         
1.1.3   The Workstation   
1.1.4   Maintenance     
1.2     Tuning a Probe-Head      
1.2.1   Tuning and Matching with a Reflection Meter        
1.2.2   Tuning and Matching with an R.F. Bridge and an Oscilloscope   
1.2.3   Tuning and Matching with a Wobble Generator  
1.3     The Lock Channel  
1.4     The Art of Shimming    
1.4.1   The Shim Gradients       
1.4.2   The Shimming Procedure   
1.4.3   Gradient Shimming   


  • Chapter 2 Determination of the Pulse-Duration     

    Exp. 2.1:  Determination of the 90&; 1H Transmitter Pulse-Duration     
    Exp. 2.2:  Determination of the 90&; 13C Transmitter Pulse-Duration      
    Exp. 2.3:  Determination of the 90&; 1H Decoupler Pulse-Duration        
    Exp. 2.4:  The 90&; 1H Pulse with Inverse Spectrometer Configuration     
    Exp. 2.5:  The 90&; 13C Decoupler Pulse with Inverse Configuration     
    Exp. 2.6:  Composite Pulses               
    Exp. 2.7:  Radiation Damping                       
    Exp. 2.8:  Pulse and Receiver Phases                          
    Exp. 2.9:  Determination of  Radio Frequency Power                
  • Chapter 3  Routine NMR Spectroscopy and Standard Tests      

    Exp. 3.1:  The Standard 1H NMR Experiment                  
    Exp. 3.2:  The Standard 13C NMR Experiment            
    Exp. 3.3:  The Application of Window Functions     
    Exp. 3.4:  Computer-aided Spectral Analysis           
    Exp. 3.5:  Line-Shape Test for 1H NMR Spectroscopy      
    Exp. 3.6:  Resolution Test for 1H NMR Spectroscopy        
    Exp. 3.7:  Sensitivity Test for 1H NMR Spectroscopy           
    Exp. 3.8:  Line-Shape Test for 13C NMR Spectroscopy            
    Exp. 3.9   ASTM Sensitivity Test for 13C NMR Spectroscopy         
    Exp. 3.10: Sensitivity Test for 13C NMR Spectroscopy      
    Exp. 3.11: Quadrature Image Test             
    Exp. 3.12: Dynamic Range Test for Signal Amplitudes       
    Exp. 3.13: 13&; Phase Stability Test           
  • Chapter 4  Decoupling Techniques       

    Exp. 4.1:  Decoupler Calibration for Homonuclear Decoupling    
    Exp. 4.2:  Decoupler Calibration for Heteronuclear Decoupling    
    Exp. 4.3:  Low Power Calibration for Heteronuclear Decoupling   
    Exp. 4.4:  Homonuclear Decoupling       
    Exp. 4.5:  Homonuclear Decoupling at Two Frequencies           
    Exp. 4.6:  The Homonuclear SPT Experiment           
    Exp. 4.7:  The Heteronuclear SPT Experiment             
    Exp. 4.8:  1D Nuclear Overhauser Difference Spectroscopy       
    Exp. 4.9:  1D NOE Spectroscopy with Multiple Selective Irradiation            
    Exp. 4.10: 1H Off-Resonance Decoupled 13C NMR Spectra                  
    Exp. 4.11: The Gated 1H-Decoupling Technique      
    Exp. 4.12: The Inverse Gated 1H-Decoupling Technique      
    Exp. 4.13: 1H Single Frequency Decoupling of 13C NMR Spectra       
    Exp. 4.14: 1H Low-Power Decoupling of 13C NMR Spectra     
    Exp. 4.15: Measurement of the Heteronuclear Overhauser Effect       

  • Chapter 5  Dynamic NMR Spectroscopy        

    Exp. 5.1:  Low Temperature Calibration with Methanol       
    Exp. 5.2:  High Temperature Calibration with 1,2-Ethanediol       
    Exp. 5.3:  Dynamic 1H NMR Spectroscopy on Dimethylformamide   
    Exp. 5.4:  The Saturation Transfer Experiment      
    Exp. 5.5:  Measurement of the Rotating Frame Relaxation Time T1r  

  • Chapter 6  1D Multipulse Sequences          

    Exp. 6.1:  Measurement of the Spin-Lattice Relaxation Time T1       
    Exp. 6.2:  Measurement of the Spin-Spin Relaxation Time T2      
    Exp. 6.3:  13C NMR Spectra with SEFT  
    Exp. 6.4:  13C NMR Spectra with APT      
    Exp. 6.5:  The Basic INEPT Technique     
    Exp. 6.6:  INEPT+      
    Exp. 6.7:  Refocused INEPT       
    Exp. 6.8:  Reverse INEPT       
    Exp. 6.9:  DEPT-135         
    Exp. 6.10: Editing 13C NMR Spectra with DEPT           
    Exp. 6.11: Multiplicity Determination with PENDANT      
    Exp. 6.12: 1D-INADEQUATE
    Exp. 6.13: The BIRD Filter    
    Exp. 6.14: TANGO       
    Exp. 6.15: The Heteronuclear Double Quantum Filter     
    Exp. 6.16: Purging with a Spin-Lock Pulse        
    Exp. 6.17: Water Suppression by Presaturation    
    Exp. 6.18: Water Suppression by the Jump and Return Method       

  • Chapter 7  NMR Spectroscopy with Selective Pulses         

    Exp. 7.1:  Determination of a Shaped 90&; 1H Transmitter Pulse     
    Exp. 7.2:  Determination of a Shaped 90&; 1H Decoupler Pulse          
    Exp. 7.3:  Determination of a Shaped 90&; 13C Decoupler Pulse     
    Exp. 7.4:  Selective Excitation with DANTE    
    Exp. 7.5:  SELCOSY  
    Exp. 7.6:  SELINCOR: Selective Inverse H,C Correlation via 1J(C,H)  
    Exp. 7.7:  SELINQUATE 
    Exp. 7.8:  Selective TOCSY    
    Exp. 7.9:  INAPT     
    Exp. 7.10: Determination of Long-Range C,H Coupling Constants     
    Exp. 7.11: SELRESOLV 
    Exp. 7.12: SERF         

  • Chapter 8  Auxiliary Reagents, Quantitative Determinations,   
                       and Reaction Mechanisms

    Exp. 8.1:  Signal Separation Using a Lanthanide Shift Reagent   
    Exp. 8.2:  Signal Separation of Enantiomers Using a Chiral Shift Reagent    
    Exp. 8.3:  Signal Separation of Enantiomers Using a Chiral Solvating Agent  
    Exp. 8.4:  Determination of Enantiomeric Purity with Pirkle's Reagent 
    Exp. 8.5:  Determination of Enantiomeric Purity by 31P NMR    
    Exp. 8.6:  Determination of Absolute Configuration by the Advanced Mosher Method                              
    Exp. 8.7:  Aromatic Solvent-Induced Shift (ASIS)   
    Exp. 8.8:  NMR Spectroscopy of OH-Protons and H/D Exchange   
    Exp. 8.9:  Isotope Effects on Chemical Shielding    
    Exp. 8.10: pKa Determination with 13C NMR     
    Exp. 8.11: The Relaxation Reagent Cr(acac)3       
    Exp. 8.12: Determination of Paramagnetic Susceptibility by NMR      
    Exp. 8.13: 1H and 13C NMR of Paramagnetic Compounds     
    Exp. 8.14: The CIDNP Effect    
    Exp. 8.15: Quantitative 1H NMR Spectroscopy: / Determination of the Alcohol Content of Polish Vodka     
    Exp. 8.16: Quantitative 13C NMR Spectroscopy with Inverse Gated 1H-Decoupling               
    Exp. 8.17: NMR Using Liquid-Crystal Solvents                  

  • Chapter 9 1D Heteronuclear NMR Spectroscopy     

    Exp. 9.1:  1H-Decoupled 15N NMR Spectra with DEPT          
    Exp. 9.2:  1H-Coupled 15N NMR Spectra with DEPT      
    Exp. 9.3:  19F NMR Spectroscopy        
    Exp. 9.4:  29Si NMR Spectroscopy with DEPT           
    Exp. 9.5:  29Si NMR Spectroscopy with Spin-Lock Polarization      
    Exp. 9.6:  119Sn NMR Spectroscopy   
    Exp. 9.7:  2H NMR Spectroscopy        
    Exp. 9.8:  11B NMR Spectroscopy       
    Exp. 9.9:  17O NMR Spectroscopy with RIDE  
    Exp. 9.10  47/49Ti NMR Spectroscopy with ARING       

  • Chapter 10  The Second Dimension                      

    Exp. 10.1:  2D J-Resolved 1H NMR Spectroscopy      
    Exp. 10.2:  2D J-Resolved 13C NMR Spectroscopy     
    Exp. 10.3:  The Basic H,H-COSY Experiment      
    Exp. 10.4:  Long-Range COSY   
    Exp. 10.5:  Phase-Sensitive COSY    
    Exp. 10.6:  Phase-Sensitive COSY-45   
    Exp. 10.7:  E.COSY    
    Exp. 10.8:  Double Quantum Filtered COSY with Presaturation   
    Exp. 10.9:  Fully Coupled C,H Correlation (FUCOUP)     
    Exp. 10.10: C,H Correlation by Polarization Transfer (HETCOR)      
    Exp. 10.11: Long-Range C,H Correlation by Polarization Transfer         
    Exp. 10.12: C,H Correlation via Long-Range Couplings (COLOC)      
    Exp. 10.13: The Basic HMQC Experiment       
    Exp. 10.14: Phase-Sensitive HMQC with BIRD Filter and GARP Decoupling    
    Exp. 10.15: Poor Man's Gradient HMQC    
    Exp. 10.16: Phase-Sensitive HMBC with BIRD Filter      
    Exp. 10.17: The Basic HSQC Experime     
    Exp. 10.18: The HOHAHA or TOCSY Experiment    
    Exp. 10.19: The NOESY Experiment      
    Exp. 10.20: The CAMELSPIN or ROESY Experiment      
    Exp. 10.21: The HOESY Experiment   
    Exp. 10.22: 2D-INADEQUATE    
    Exp. 10.23: The EXSY Experiment     
    Exp. 10.24: X,Y Correlation 

  • Chapter 11 1D NMR Spectroscopy with Field Gradients   

    Exp. 11.1:  Calibration of Pulsed Field Gradients     
    Exp. 11.2:  Gradient Preemphasis      
    Exp. 11.3:  Gradient Amplifier Test        
    Exp. 11.4:  Determination of Pulsed Field Gradient Ring-Down Delays    
    Exp. 11.5:  The Pulsed Gradient Spin-Echo Experiment  
    Exp. 11.6:  Excitation Pattern of Selective Pulses   
    Exp. 11.7:  The Gradient zz-Filter    
    Exp. 11.8:  gs-SELCOSY      
    Exp. 11.9:  gs-SELTOCSY  
    Exp. 11.10: DPFGSE-NOE    
    Exp. 11.11: gs-SELINCOR    
    Exp. 11.12: GRECCO      
    Exp. 11.13: WATERGATE        
    Exp. 11.14: Water Supression by Excitation Sculpting         

  • Chapter 12 2D NMR Spectroscopy with Field Gradients      

    Exp. 12.1:  gs-COSY      
    Exp. 12.2:  Phase-Sensitive gs-DQF-COSY     
    Exp. 12.3:  gs-HMQC 
    Exp. 12.4:  gs-HMBC     
    Exp. 12.5:  ACCORD-HMBC       
    Exp. 12.6:  Phase-Sensititive gs-HSQC with Sensitivity Enhancement  
    Exp. 12.7:  gs-TOCSY     
    Exp. 12.8:  gs-HMQC-TOCSY       
    Exp. 12.9:  2Q-HMBC      
    Exp. 12.10: 1H-Detected 2D INEPT-INADEQUATE    
    Exp. 12.11: gs-NOESY     
    Exp. 12.12: gs-HSQC-NOESY      
    Exp. 12.13: gs-HOESY 
    Exp. 12.14: 1H,15N Correlation with gs-HMQC      

  • Chapter 13  The Third Dimension              

    Exp. 13.1: 3D HMQC-COSY       
    Exp. 13.2: 3D gs-HSQC-TOCSY        
    Exp. 13.3: 3D H,C,P-Correlation       
    Exp. 13.4: 3D HMBC     

  • Chapter 14 Solid-State NMR Spectroscopy   

    Exp. 14.1: Shimming Solid-State Probe-Heads    
    Exp. 14.2: Adjusting the Magic Angle       
    Exp. 14.3: Hartmann-Hahn Matching           
    Exp. 14.4: The Basic CP/MAS Experiment       
    Exp. 14.5: TOSS          
    Exp. 14.6: SELTICS         
    Exp. 14.7: Multiplicity Determination in the Solid-State     

    Appendix 1            
    Instrument Dialects       

    Appendix 2       
    Elementary Product Operator Formalism Rules    

    Glossary and Index          


Known Bugs


  •  page 267: MgSO4 instead of Mg2SO4
  • page 524: missing phase cycle:
    p1: x, -x
    p2: x, x, -x, -x
    p3, p4: x, y, x, y, -x, -y, -x, -y
    p5: x
    aq: x, -x, -x, x
  • wrong gradient strengths: have to be 0.1 T /m (instead of 0.01 T/m)
    on most pages (434, 437, 440, 447, 450, 453, 457, 460, 465, 478, 482, 486, 490, 494, 498, 502, 507, 510, 514, 521, 529, 539, 547)

  • back top