Project A05 – Structures of adhesion GPCR by cryo-electron microscopy

In contrast to most other GPCRs, adhesion GPCRs (aGPCRs) exhibit very large N-termini (up to 6,000 amino acids) constituted by structurally and functionally diverse domains. These aGPCRs bind to a number of different proteins or to other extracellular interaction partners. The N-termini, therefore, are predestined to integrate a multitude of signals, such as ligand binding, cell-cell (-matrix) contacts and even mechanical forces finally into intracellular signals. The project A05 aims to solve 3D-structures of aGPCRs by cryo-EM (or protein X-ray crystallography for receptor parts) to unravel the activation mechanisms of this unique class of membrane receptors.

Contact

Dr. Patrick Scheerer (Project Leader)

Charité - Universitätsmedizin Berlin
Institute for Medical Physics and Biophysics
Group Protein X-ray Crystallography & Signal Transduction
Charitéplatz 1, D-10117 Berlin

Phone +49 30 450 524 178
E-Mail
Web biophysik.charite.de/forschung/ag_scheerer

Prof. Dr. Christian M.T. Spahn (Project Leader)

Charité - Universitätsmedizin Berlin
Institute for Medical Physics and Biophysics
AG Cryo-electron microscopy of macromolecular machines
Charitéplatz 1, D-10117 Berlin

Phone +49 30 450 524 131
E-Mail
Web biophysik.charite.de/forschung/ag_spahn

Prof. Dr. Torsten Schöneberg (Project Leader)

Leipzig University, Faculty of Medicine
Rudolf Schönheimer Institute of Biochemistry
Johannisallee 30, D-04103 Leipzig

Phone +49 341 97 22150
E-Mail

Dr. Amal Hassan (Postdoctoral Fellow)

Charité - Universitätsmedizin Berlin
Institute for Medical Physics and Biophysics
Group Protein X-ray Crystallography & Signal Transduction
Charitéplatz 1, D-10117 Berlin

Phone: +49 30 450 524 150
E-Mail:

Further Team Members

Gunnar Kleinau (Senior Scientist at Charité - Group Scheerer)
Anja Koch (Technician at Charité - Group Scheerer)
Brain Bauer (Technician at Charité - Group Scheerer)
Justus Loerke (Senior Scientist at Charité - Group Spahn)
Magdalena Schacherl (Senior Scientist at Charité - Group Spahn)
Jörg Bürger (Technician at Charité - Group Spahn)

Resources

Methods and Techniques used in A01 and A05 at the Charité:

Structure biology methods:

  • Protein X-ray crystallography, membrane protein crystallization, lipidic cubic phase (LCP) crystallization (e.g. TTP Labtech’s mosquito, Gryphon-LCP crystallization and PRIMA Xtallob robots; Formulatrix – Rock Imager 182/54; High-end Stereo microscope Leica M205; Formulatrix – MUVIS)
  • X-ray data acquisition: synchrotrons (e.g. BESSY and DESY (Germany), ESRF (France), or in house rotating anode generator (MicroMax007 Microfocus)
  • Free-electron laser (XFEL) X-ray data acquisition: (e.g. LCLS-SLAC (USA) or SACLA-Spring-8 (Japan))
  • Cryo-electron microscopy (in house) – high-end 300 kV FEI Titan Krios G3 cyro-TEM System/ K3 direct electron detector/ Volta phase plate/ energy filter, Vitrobot, 120kV TEM for sample screening

GPCR production methods:

  • GPCR cloning/expression/purification/solubilisation methods
  • Large-scale heterologous cell expression (baculovirus expression in Sf9/High Five™ and HEK or Expi293F and E.Coli)
  • Various purification systems: Äktapurifier (FPLC), AktaprimePlus (Gel filtration) or ultra-high-performance liquid chromatography – UltiMate 3000 Bio UHPLC
  • Production of G-protein or arrestin
  • Nanodisc/SMA lipid particles (SMALPs) production and integration

Biophysical methods:

  • Nano-differential scanning fluorimetry (nDSF with NanoTemper Prometheus system) or other thermal shift assays (e.g. CPM) to test thermostability
  • MicroScale Thermophoresis (MST) to test binding affinity & protein interactions (NanoTemper Monolith NT 115 system)
  • Multiplate reader for assay development with e.g. BRET/FRET/nanoLuc (CLARIOstar Plus – BMG Labtech)
  • Surface plasmon resonance-like instrument to test biomolecular interaction (White FOx 1.0 – FOx Biosystem)
  • Static light scattering – Multi-angle light scattering detector (Wyatt Technology)
  • UV-vis spectrometer (Cary4000, Agilent)

Publications

Kleinau G, Heyder NA, Tao YX, Scheerer P. Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. Int J Mol Sci. 2020 Aug 10;21(16):5728. doi: 10.3390/ijms21165728. PMID: 32785054

Paisdzior S, Dimitriou IM, Schöpe PC, Annibale P, Scheerer P, Krude H, Lohse MJ, Biebermann H, Kühnen P. Differential Signaling Profiles of MC4R Mutations with Three Different Ligands. Int J Mol Sci. 2020 Feb 12;21(4). pii: E1224. doi: 10.3390/ijms21041224. PMID: 32059383

Schulze A, Kleinau G, Neumann S, Scheerer PSchöneberg T, Brüser A. The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB J. 2020 Jul 10. doi: 10.1096/fj.202000100R. Epub ahead of print. PMID: 32648604

Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R, Hall RA, Harty BL, Kirchhoff C, Knapp B, Krishnan A, Liebscher I, Lin HH, Martinelli DC, Monk KR, Peeters MC, Piao X, Prömel S, Schöneberg T, Schwartz TW, Singer K, Stacey M, Ushkaryov YA, Vallon M, Wolfrum U, Wright MW, Xu L, Langenhan T, Schiöth HB. A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Pharmacol Rev. 2015; 67:338-67.

Bohnekamp J, Schöneberg T. Cell adhesion receptor GPR133 couples to Gs protein. J Biol Chem. 2011; 286:41912-6.

Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM, Mogha A, Cöster M, Simon KU, Rothemund S, Monk KR, Schöneberg T. A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep. 2014; 9:2018-26.

Schöneberg T, Kleinau G, Brüser A. What are they waiting for? – Tethered agonism in G protein-coupled receptors. Pharmacol Res. 2016; 108:9-15.

Prömel S, Frickenhaus M, Hughes S, Mestek L, Staunton D, Woollard A, Vakonakis I, Schöneberg T, Schnabel R, Russ AP, Langenhan T. The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors. Cell Rep. 2012; 2:321-31.

Behrmann E, Loerke J, Budkevich TV, Yamamoto K, Schmidt A, Penczek PA, Vos MR, Bürger J, Mielke T, Scheerer P, Spahn CM. Structural snapshots of actively translating human ribosomes. Cell. 2015; 161:845-57.

Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A, Hilal T, Sprink T, Yamamoto K, Mielke T, Bürger J, Shaikh TR, Dabrowski M, Hildebrand PW, Scheerer P, Spahn CM. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. EMBO J. 2015; 34:3042-58.

Nikolay R, Hilal T, Qin B, Mielke T, Bürger J, Loerke J, Textoris-Taube K, Nierhaus KH, Spahn CMT. Structural Visualization of the Formation and Activation of the 50S Ribosomal Subunit during In vitro. Mol Cell. 2018; 70:881-93.

Szczepek M, Beyrière F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME, Hildebrand PW, Scheerer P. Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nature Commun. 2014; 5:4801.

Qureshi BM, Schmidt A, Behrmann E, Bürger J, Mielke T, Spahn CMT, Heck M, Scheerer P. Mechanistic insights into the role of prenyl-binding protein PrBP/δ in membrane dissociation of phosphodiesterase 6. Nature Commun. 2018; 9:90.