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History of the Ising model

Wilhelm Lenz

1888�1957

Ernst Ising

1900�1998

First theory professor in Hamburg
Did teaching for most of his life
Germany till 1938, US since 1947
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Origin of the Ising model

In a quantum treatment certain angles α will be distinguished, among them in any
case α = 0 and α = π. If the potential energy W has large values in the intermediate
positions, as one must assume taking account of the crystal, then these positions will
be very seldom occupied, Umklapp processes will therefore occur very rarely, and the
magnet will �nd itself in the two distinguished positions.

If one assumes that in the ferromagnetic bodies the potential energy of an atom
(elementary magnet) with respect to its neighbors is di�erent in the null position and
in the π position, then there arises a natural directedness of the atom corresponding to
the crystal state, and hence a spontaneous magnetization.

Wilhelm Lenz, Physikalische Zeitschrift 21, 613 (1920)

E. Ising, Z. Phys. 31, 253 (1925)

Ising model



Origin of the Ising model

In a quantum treatment certain angles α will be distinguished, among them in any
case α = 0 and α = π. If the potential energy W has large values in the intermediate
positions, as one must assume taking account of the crystal, then these positions will
be very seldom occupied, Umklapp processes will therefore occur very rarely, and the
magnet will �nd itself in the two distinguished positions.

If one assumes that in the ferromagnetic bodies the potential energy of an atom
(elementary magnet) with respect to its neighbors is di�erent in the null position and
in the π position, then there arises a natural directedness of the atom corresponding to
the crystal state, and hence a spontaneous magnetization.

Wilhelm Lenz, Physikalische Zeitschrift 21, 613 (1920)

E. Ising, Z. Phys. 31, 253 (1925)

Ising model



1. Introduction

2. Exchange interactions

3. Finite systems

4. Ising model

4.1. 1D model in zero �eld

4.2. 1D model in the magnetic �eld

4.3. Mean-�eld solution

4.4. Exact solution in 2D and its implications

4.5. Beyond magnetism

4.6. Monte-Carlo simulations

5. Heisenberg model

6. Hubbard model

7. Kondo model

8. Neutron scattering

Ising model 4.1. 1D model in zero �eld



1. Introduction

2. Exchange interactions

3. Finite systems

4. Ising model

4.1. 1D model in zero �eld

4.2. 1D model in the magnetic �eld

4.3. Mean-�eld solution

4.4. Exact solution in 2D and its implications

4.5. Beyond magnetism

4.6. Monte-Carlo simulations

5. Heisenberg model

6. Hubbard model

7. Kondo model

8. Neutron scattering

Ising model 4.2. 1D model in the magnetic �eld



Fate of the Ising model

I 1925, Ising: no magnetic transition in 1D; could not solve the model in higher
dimensions, but conjectured that the result should remain the same

I 1928, Heisenberg: proposed a di�erent type of magnetic interaction,
acknowledged Ising's e�orts and conjectured that the larger number of nearest
neighbors (at least eight) will lead to a magnetic transition, should proper form of
the interaction be considered

I 1932, Van Vleck:

In a certain sense the Lenz-Ising model is a purely mathematical �ction, as it neglects
the interactions −2J (sxi s

x
j + syi s

y
j ) between the components of spin perpendicular

to the direction of the magnetic �eld, which are often important physically. The
result should not be identi�ed too closely with the actual magnetic behavior of the
material simply because of the inadequacy and arbitrariness of the model.

Till 1950's: Ising model is a purely mathematical game

Since 1960's: limited applications to rare-earth compounds

Since ∼ 2000: deliberate search for Ising magnets
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Spinon (kink) excitations

R. Coldea et al. Science 327, 177 (2010)
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Bound (con�ned) spinons

Free spinons Bound spinons

Excitation continuum splits into narrow excitations at low temperatures

R. Coldea et al. Science 327, 177 (2010)
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Bound spinons

Interchain interactions create an e�ective �eld

Domains walls are bound in this e�ective potential
and form a sequence of bound states

R. Coldea et al. Science 327, 177 (2010)
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Con�nement in particle physics

A string of two spinons
can break into two strings
with two spinons each

Equivalent to
quark-antiquark pairs

in hadrons
(quark con�nement)

C.M. Morris et al.

Phys. Rev. Lett.
112, 137403 (2014)
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Mean-�eld vs. exact

Mean-�eld

Transition in any dimension

Finite jump of Cm at Tc

Exact

No transition in 1D

Tc (3D) > Tc (2D)

Cm diverges at Tc

L.J. de Jongh
and A.R. Miedema

Adv. Phys. 23, 1 (1974)
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Attempts to solve the model in 2D

I 1936, Rudolf Peierls:
Did not manage (and did not try) to solve the model, but demonstrated non-zero
magnetization at low temperatures, i.e., the formation of an ordered state in 2D

I 1940-41, Hendrik Kramers and Gregory Wannier:
Exact transition temperature kBTc/J = 2/ ln(1 +

√
2) ' 2.269

derived by constructing the dual lattice (Kramers-Wannier duality)

Approximate calculation of the partition function beyond mean �eld
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Lars Onsager

However, those who know him will
witness the fact that he is clarity itself,
and often responds at great length if
the questions presented to him refer to
Norse mythology, gardening, the more
subtle aspects of Kriegspiel (a form of
blindfold chess involving two opponents
and a referee), and even encyclopedic
facts of organic chemistry

Elliott Montroll

I 1942: exact partition function
announced on a conference

I 1944: �rst publication

I 1947: human-readable publication
(thanks to Onsager's PhD student)

Lars Onsager

1903�1976
1968 Nobel prize in chemistry

for his discovery of the reciprocal relations
bearing his name, which are fundamental for
the thermodynamics of irreversible processes
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Elliott Montroll

I 1942: exact partition function
announced on a conference

I 1944: �rst publication

I 1947: human-readable publication
(thanks to Onsager's PhD student)

Solution for the magnetization

1948: announced on a conference,
never published

1952: published by C.N. Yang
(following Onsager's advice)

Lars Onsager

1903�1976
1968 Nobel prize in chemistry

for his discovery of the reciprocal relations
bearing his name, which are fundamental for
the thermodynamics of irreversible processes

Ising model 4.4. Exact solution in 2D and its implications



After Onsager

In the days of Kepler and Galileo it was fashionable to announce a new scienti�c result
through the circulation of a cryptogram which gave the author priority and his colleagues
headaches. Onsager is one of the few moderns who operates in this tradition.

Elliott Montroll

Hendrik Casimir (stayed in Netherlands throughout WWII):
What are the news in theoretical physics since 1940?

Wolfgang Pauli (worked in the US)
Nothing special, really, but Onsager's solution was an interesting piece of work

per Elliott Montroll

Young physicists today may �nd it surprising, even unbelievable, that in the 1950's the
Lenz-Ising model and similar problems were not deemed important by most physicists.
They were considered arcane exercises, narrowly interesting, mathematically seducing,
but of little real consequence.

C.N. Yang

In the best mathematical tradition, not being able to solve the original problem,
I looked around for a similar problem which I could solve

Mark Kac about his attempted work on the Ising model in 3D
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Ehrenfest theory of phase transitions

Paul Ehrenfest

1880�1933

�rst theory of phase transitions

Super�uid transition of helium (λ-transition)
�rst example of a second-order transition

W.H. Keesom and K. Clusius,
KNAW Proceedings 35, 307 (1932)

I First order:
latent heat, discontinuity in dF/dα

I Second order: no latent heat,
discontinuity only in d2F/dα2
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Logarithmic divergence

λ-transition in He

K.R. Atkins and M.H. Edwards
Phys. Rev. 97, 1429 (1955)
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Logarithmic divergence

λ-type anomaly at the magnetic transition J.C. Wright et al.

Phys. Rev. B 3, 843 (1971)
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Revised Ehrenfest theory

G. Jaeger, Arch. Hist. Exact. Sci. 53, 51 (1998)
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Revised Ehrenfest theory

Continuous transitions (former "second-order")

First derivatives of the free energy (dF/dα) change continuously

Second derivatives (d2F/dα2) may or may not have discontinuities

No latent heat, no hysteresis

Order parameter can be de�ned

Constrained by symmetry (the transition follows one of the irreducible
representations of the symmetry group)

Examples:

magnetic ordering, superconducting transition (in zero �eld)

Discontinuous transitions (former "�rst-order")

First derivatives of the free energy (dF/dα) show discontinuities

Latent heat, hysteresis

Examples:

boiling/crystallization, magnetic ordering with a structural component
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Residual entropy

G. Wannier, Phys. Rev. 79, 357 (1950)

Antiferromagnetic Ising model on the triangular lattice

In�nite number of con�gurations with the same energy
(extensive ground-state degeneracy)

Large residual entropy of 0.3383R (entropy at T = 0)
nearly 50% of the total entropy of R ln 2

Violates the third law of thermodynamics
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Spin ice

2-in-2-out states

in�nite number

of con�gurations possible

Residual entropy

(same as in water ice)

M.J.P. Gingras and P.A. McClarty, Rep. Prog. Phys. 77, 056501 (2014)
R. Moessner and A.P. Ramirez, Physics Today (2) 24 (2006)
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Magnetic monopoles

2-in-2-out con�guration

(ground state)

3-in-1-out + 1-in-3-out

(excitation)

The tetrahedra with excited con�gurations (3-in-1-out and 1-in-3-out)
can be viewed as magnetic monopoles

L. Balents, Nature 464, 199 (2010)
per C. Castelnovo et al. Nature 451, 42 (2008)
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Lattice gas models and absorption

Adsorbates form di�erent phases (liquid or crystalline with di�erent periodicity)
depending on temperature and "�eld" (surface coverage)

Relevant to catalysis, environmental research, etc.

H. H�akkinen and M. Manninen, Phys. Rev. B 46, 1725 (1992)
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Alloys

Binary alloy

after quenching to

temperatures below Tc

S. Majumder and S.K. Das, Phys. Chem. Chem. Phys. 15, 13209 (2013)
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Battery materials

F. Zhou et al. Phys. Rev. Lett. 97, 155704 (2006)
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Battery materials

Two ingredients:

Li atoms and vacancies
Additional electrons on Fe (2+ vs. 3+)

Both Li-Li, e − e, and Li − e interactions should be considered

F. Zhou et al. Phys. Rev. Lett. 97, 155704 (2006)
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Battery materials

All features of

the experimental

phase diagram

are captured

by the Ising model

F. Zhou et al.

Phys. Rev. Lett.
97, 155704 (2006)
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ANNNI model and Devil's staircase

White areas:
commensurate order

( 1
4
, 1

8
, 2

11
, etc.)

Dark areas:
incommensurate order

(period is not a simple
rational number)

I ANNNI = anisotropic next-nearest-neighbor Ising model

K. Ohwada et al. Mod. Phys. Lett. B 20, 199 (2006)
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Devil's staircase (�ower)

K. Ohwada et al. Phys. Rev. Lett. 87, 086402 (2001)
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Applications in neurology

Neuron activity

represented by

an Ising variable

T.K. Das et al. BioMed
Research International

237898 (2014)
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Applications in sociology

Image credit: eoht.info
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Back to magnetism

V. Daniel, Sociological Review 44, 107 (1952)
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Why Monte-Carlo?
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Why Monte-Carlo?

Image credit: Martinp1 (Wikimedia Commons)
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Why Monte-Carlo?

Image credit: Toni Lozano (Flickr), Yamaguchi (Wikimedia Commons)
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Ulam and his solitaire

Stanislaw Ulam

1909�1984
Together with Edward Teller
developed the �rst (successful)
design of the hydrogen bomb

The �rst thoughts and attempts I made were
suggested by a question which occurred to me in
1946 as I was convalescing from an illness and playing
solitaires. The question was what are the chances
that a Can�eld solitaire laid out with 52 cards
will come out successfully? After spending a lot of
time trying to estimate them by pure combinatorial
calculations, I wondered whether a more practical
method than "abstract thinking" might not be to
lay it out say one hundred times and simply observe
and count the number of successful plays.
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Metropolis and his algorithm

Nicholas Metropolis

1915�1999
director of the computing facility

at Los Alamos

Instead of choosing con�gurations randomly, then
weighting them with exp(E/kT ), we choose
con�gurations with a probability exp(E/kT ) and
weight them evenly.

N. Metropolis et al.
J. Chem. Phys. 21, 1087 (1953)

J. Lee et al. Energies 8, 5538 (2015)
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Monte-Carlo simulations made simple

ALPS = Algorithms and Libraries for Physics Simulations
http://alps.comp-phys.org/

Runs on di�erent platforms (incl. Windows)

Diagonalization: exact and sparse (Lanczos)

Monte Carlo: classical and quantum spin models

Density-matrix renormalization group

Dynamic mean �eld theory

I Computationally not very e�cient
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