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General approach

Correlate experimental magnetic behavior with the microscopic (model) parameters

Correlate the microscopic parameters with structural features

I Structure-properties relationship
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Outline

What can we measure?

I Magnetization (+susceptibility)

I Specific heat

I Neutron diffraction

What can we calculate?

I Parameters of interest

I How to calculate?

I What to observe?

How to bring this together?

I Analytical solutions

I Numerical simulations

I Classical approximation
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Magnetic susceptibility

Usually the easiest thing to measure

Can be done on powder, polycrystalline pieces, single crystals, even thin films

Used to determine nature of magnetism, characteristic temperatures, transitions...

I Problem: signal scales with the magnetic moment of the phase,
not only with its volume fraction

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 4 / 56
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Magnetic susceptibility: caveats

Ferromagnetic phases produce most of the signal, even if their amount is tiny

Ferromagnetic contributions are suppressed by the field, but it does not always help
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Magnetic susceptibility: local magnetic moment

Curie-Weiss fit [χ = C/(T − θ)] at high temperatures returns:

effective moment µeff calculated from C = NA g2µ2
eff/3kB

Curie-Weiss temperature θ (energy scale of magnetic interactions)

I Problem: how to choose the T range of the fit? (rely on Tmin � |θ|)
I Never fit the data, where you suspect (or observe) foreign contributions!
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Magnetic susceptibility: identifying the transitions

Magnetic transitions manifest themselves by kinks or humps,

but sometimes they are hidden

Fisher’s heat capacity, d(χT )/dT , helps to identify them
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Magnetization vs. susceptibility

MPMS/PPMS measure magnetic moment (magnetization) M
that can be recalculated into magnetic susceptibility χ = dM/dH ∼ M/H

χ(T ) and M(H) are inextricably intertwined

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 8 / 56



Magnetization: saturation

Saturation magnetization gauges the local moment:

µeff = g
√

S(S + 1) (effective moment, high-T )

Ms = gSµB (local moment, low-T )

Saturation field is a measure of (antiferromagnetic) exchange couplings

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 9 / 56



Specific heat

Not too difficult to measure, but easy to make a mistake
(contributions of the platform and grease should be subtracted carefully)

Solid piece of a material is required (powder is difficult)

Signal scales with the volume fraction of the phase
(minor impurities do not matter)

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 10 / 56



Specific heat: confirm phase transitions

I When you see signatures of a transition in both χ and Cp ,
you can be rather confident it is intrinsic

I But: low-D antiferromagnets may show very weak of absent transition anomalies

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 11 / 56
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Specific heat: low-T contributions

Phonons: Cp ∼ T 3 (always there!)

Heisenberg antiferromagnet: Cp ∼ T 3

Heisenberg ferromagnet: Cp ∼ T
3
2

Spin gap: Cp ∼ exp(−∆/T )

Other power laws:
you might have found something
interesting!

Cp ∼ T −→ gapless spin liquid

Low-temperature specific heat probes characteristic magnetic excitations

The data below 1.8 K may be needed (PPMS with 3He insert)

Nevertheless, it helps to check Cp/T even above 1.8 K;

finite zero-temperature
value means you have an unusual magnet, or simply a metal...

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 12 / 56
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Neutron diffraction

Type of magnetic order (you get from the experiment)

Size of the ordered moment (need an idea in advance)
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Ordered moment is important
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Always choose the right diffractometer (long wavelength, high flux)
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Neutron diffraction

Type of magnetic order (you get from the experiment)

Size of the ordered moment (need an idea in advance)

Successful beamtime proposal should include:

I Transition temperatures confirmed by thermodynamic measurements
(susceptibility, specific heat)

I Estimate of the ordered moment
(Curie-Weiss effective moment, saturation magnetization)

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 15 / 56



What can we measure?

I Magnetization (+susceptibility)

I Specific heat

I Neutron diffraction

What can we calculate?

I Parameters of interest

I How to calculate?

I What to observe?

How to bring this together?

I Analytical solutions

I Numerical simulations

I Classical approximation
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Spin Hamiltonian

Ĥ =
∑
〈ij〉

Jij Ŝi Ŝj +
∑
〈ij〉

Dij [Ŝi × Ŝj ] +
∑
〈ij〉

Ŝi Γij Ŝj +
∑
i

Ai Ŝ
2
iz

Jij – isotropic (Heisenberg) exchange; normally, this is the leading term

Dij – Dzyaloshinsky-Moriya interactions (3 components)

Γij – symmetric part of the anisotropy (5 components)

Ai – single-ion anisotropy

I All richness of the magnetic behavior is there,
but the model is usually too ”rich” to be tractable

I Use only the first term unless you are interested in the magnetic moment direction,
or observe anisotropic effects experimentally
(very different behavior for different field directions, spin canting...)

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 17 / 56
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∑
〈ij〉
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Heisenberg model

Ĥ =
∑
〈ij〉

Jij Ŝi Ŝj

Jij are exchange integrals = magnetic interaction energies
denoted by bonds of a spin lattice

I The model is quantum, i.e., it contains spin operators, not simply spin vectors

I Quantum features are important when we consider the magnetic behavior

I However, we usually disregard them when calculating Jij ’s from DFT

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 18 / 56
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Two ways to extract the exchange parameters

We usually do DFT

It is also possible to use quantum chemistry (at least the MRCI level required), but
then you are restricted to small clusters (long-range interactions are hard to get)

Mapping approach (total energies)

Exchange parameters from total energies
of fixed spin configurations

Empirical corrections (DFT+U)
or hybrid functionals required

I Can be applied to a wide range of materials

I ”Shut up and calculate” type of approach

Model approach (electron hoppings)

Take only free-electron part from DFT

Add Hubbard U on the model level
Ĥ =

∑
ij tij ĉ

†
iσ ĉjσ + U

∑
i n̂i↑n̂i↓

I Most useful for one-orbital cases

I More reliable and gives better insight

E =
FM

+J E =
AFM

-J
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Mapping approach

E =
∑
〈ij〉

JijSiSj

In a nutshell, J ∝ JFM − JAFM

Advanced version:

J =
E↑↑ + E↓↓ − E↑↓ − E↓↑

4S2

Very easy and straight-forward, but you need accurate total energies

Hybrid functionals may be OK, but you’ll have to calculate large supercells (50+
atoms), so you may not like hybrid functionals for this particular problem

DFT+U is faster and comparable in accuracy, especially if you choose the right U

Remember to use JH 6= 0 (Hund’s exchange is there and may be important)
[Phys. Rev. B 79, 035103 (2009)]
Don’t underestimate the (acute) problem of the double-counting correction
[LDAUTYPE in VASP], see also [Phys. Rev. B 84, 144429 (2011)]

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 20 / 56
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Mapping approach

In a nutshell, J ∝ JFM − JAFM

Advanced version:

J =
E↑↑ + E↓↓ − E↑↓ − E↓↑

4S2

Choice of Hubbard U in DFT+U:

Ask Olivier

Ask recent literature

Use several U values and choose the one that better fits (your) experiment

I Everyone has his/her own U value. That’s normal. Take it easy!

I Philosophical remark: We are not doing true ab initio here. One may be more
ab initio with quantum chemistry, but you will also find junctures, where you have
to look up some experimental data before you can really ”predict” anything

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 21 / 56
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Multi-orbital Hubbard model

Ĥelectronic =
∑
i,j,σ

tij Ĉ
+
iσĈjσ +

∑
i
Ueff n̂i↑n̂i↓ One-orbital model

i and j label sites ⇓
Ĥspin =

∑
i,j

JAFM
ij Ŝi Ŝj JAFM

at t � Ueff

Ĥelectronic =
∑
i,j,σ
α6=β

tα→βij Ĉ+
iασĈjβσ +

∑
iα

Ueff n̂αi↑n̂
α
i↓+ Multi-orbital model

+
∑

i,σ,α
(ε0 +∆α)n̂αiσ −

∑
i,σ,σ′

α6=β

JH

2
(Ĉ+

iασĈiασ′ Ĉ+
iβσ′ Ĉiβσ + H.c.)

i and j label sites, α and β label orbitals
∆α are energy splittings, JH is the Hund’s coupling

Ĥspin =
∑
i,j

Jij Ŝi Ŝj J = JAFM + JFM

at t � Ueff

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 22 / 56
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Ĥelectronic =
∑
i,j,σ
α 6=β

tα→βij Ĉ+
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Kugel-Khomskii model

t Electron hops to the half-filled orbital

JAFM = 4t2/U

D

t

Electron hops to an empty orbital

JFM = −
4t2

(U + ∆)(U + ∆− JH)

JH is the on-site Hund’s coupling
∆ is the crystal-field splitting

Use the uncorrelated band structure (no need to mess around with DFT+U)

The results still depend on U, but this dependence is explicit now,
and, in some cases, just unimportant: J2/J1 ∼ t2/t1

I Clear microscopic picture behind the magnetic interactions

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 23 / 56
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Example: Sr2VO(PO4)2

Sr2VO(PO4)2 is magnetic insulator, V4+ = d1

We obtained metallic band structure because we have not used U
That was intentional!

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 24 / 56



Example: Sr2VO(PO4)2, V4+ is magnetic

Identify the magnetic orbital(s) [those lying close to the Fermi level]

Check that crystal-field levels make sense

Use Wannier functions to extract orbital energies (ε) and electron hoppings (t)

Introduce t’s into the Kugel-Khomskii or similar formulas

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 25 / 56
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Example: Sr2VO(PO4)2, orbital picture
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VO octahedron
6

J1 = −4.7 K ferromagnetic no overlap of the magnetic orbitals

J2 = 9.7 K antiferromagnetic small but non-negligible overlap

Magnetic orbital is perpendicular to the –V–V–V– chain

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 26 / 56
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Sr2VO(PO4)2: model vs. mapping approaches

J1 (K) J2 (K)

Model approach −4.7 9.7

28 atoms, 5 hours

DFT+U, Ud = 4 eV 2.5 15.7

56 atoms, three configurations,

DFT+U, Ud = 6 eV −8.1 13.2

∼ 2 days for each Ud value

Experiment −8.3 5.9

years...

Remark for experts: calculations were done in the full-potential code (FPLO)
VASP will be much faster, but may be (even) less accurate

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 27 / 56
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Model vs. mapping approaches

Model approach is most convenient when you have only one magnetic orbital

viz. spin- 1
2

: Cu2+, V4+, Ti3+, etc.

Mapping approach can be used for any magnetic ion
without thinking how many orbitals it has

I But: orbitally degenerate scenarios are difficult in DFT+U (Ti3+, Cr2+, etc.),
and you can strongly benefit from the Kugel-Khomskii description

Before you use DFT+U, especially for magnetic parameters:

I know what the occupation matrices are, and how to find them in the output

I know what the charge-transfer insulators are, and where they appear

I be cautious with 4d , don’t try 5d unless you know what you are doing

I don’t use DFT+U for metals!

Good news: in most of the problematic cases, DFT+U will simply not converge

Bad news: some non properly converged or otherwise flawed DFT+U results have
been published, see [J. Phys. Chem. A 114, 12345 (2010)] vs. [arXiv:1106.3665]

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 28 / 56
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Sanity checks

There is a chance your DFT(+U+whatever) results will be wrong. What to do?

I Calculate J’s in different supercells, make sure that the results are consistent

I Use model approach: look at the electron hoppings and make sure that there are
relevant hoppings for all strong J’s

I Rely on the general trends:
I Short-range vs. long-range
I Goodenough-Kanamori-Anderson rules
I Long-range interactions (super-superexchange) always have a reason

Size: exchange couplings decrease with the distance, but not exponentially,
because ligands are strongly involved (superexchange)

J ' 100 K for the Cu–Cu distance of 6 Å is quite possible,
but 400 K would be very unlikely

Sign:

Long-range couplings are normally antiferromagnetic
Short-range couplings can be either ferro- or antiferromagnetic

I There are exceptions, but they confirm the rule

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 29 / 56
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but 400 K would be very unlikely

Sign:

Long-range couplings are normally antiferromagnetic
Short-range couplings can be either ferro- or antiferromagnetic

I There are exceptions, but they confirm the rule

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 29 / 56



Sanity checks

There is a chance your DFT(+U+whatever) results will be wrong. What to do?

I Calculate J’s in different supercells, make sure that the results are consistent

I Use model approach: look at the electron hoppings and make sure that there are
relevant hoppings for all strong J’s

I Rely on the general trends:
I Short-range vs. long-range
I Goodenough-Kanamori-Anderson rules
I Long-range interactions (super-superexchange) always have a reason

Size: exchange couplings decrease with the distance, but not exponentially,
because ligands are strongly involved (superexchange)

J ' 100 K for the Cu–Cu distance of 6 Å is quite possible,
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Goodenough-Kanamori-Anderson: 180◦ vs. 90◦

Sr2CuO3

180◦ superexchange
J ' 2800 K

Li2CuO2

90◦ superexchange
J ' −230 K

Exchange between half-filled d-orbitals:

180◦ = strongly antiferromagnetic

90◦ = weakly ferromagnetic

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 30 / 56



Goodenough-Kanamori-Anderson: 180◦ vs. 90◦

180◦ superexchange – magnetic d-orbitals overlap with the same p-orbital

90◦ superexchange – magnetic d-orbitals overlap with different p-orbitals

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 31 / 56



Goodenough-Kanamori-Anderson: example

dFe−Fe (Å) ϕ (deg) J (K)

J⊥ 3.06 97.4 3

J44 2.91 94.2 9

J43 3.39 119.2 38

J43’ 3.53 130.9 57

J33 3.64 180 116

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 32 / 56



Super-super-...-superexchange

Pb2Cu(OH)4Cl2

interatomic distance of 5.88 Å
J ' 35 K, TN = 11 K

[Phys. Rev. B 87, 064404 (2013)]

linear Cu–O–O–Cu pathways are
favorable for the superexchange

BaV3O8

interatomic distance of 7.43 Å
J ' 38 K, TN = 6 K

[Phys. Rev. B 89, 014405 (2014)]

additional low-lying orbitals
(here, d-orbitals of V+5)

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 33 / 56
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J ' 35 K, TN = 11 K

[Phys. Rev. B 87, 064404 (2013)]

linear Cu–O–O–Cu pathways are
favorable for the superexchange

BaV3O8

interatomic distance of 7.43 Å
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What can we measure?

I Magnetization (+susceptibility)

I Specific heat

I Neutron diffraction

What can we calculate?

I Parameters of interest

I How to calculate?

I What to observe?

How to bring this together?

I Analytical solutions

I Numerical simulations

I Classical approximation

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 34 / 56



Heisenberg model

Ĥ =
∑
〈ij〉

Jij Ŝi Ŝj

Jij are exchange integrals = magnetic interaction energies
denoted by bonds of a spin lattice

I The model is quantum, i.e., it contains spin operators, not simply spin vectors

I Quantum features are important when we consider the magnetic behavior

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 35 / 56



Analytical results

In most cases, we can’t solve the spin model analytically

I but we can make approximations

Curie-Weiss temperature:

θ =
S(S + 1)

3

∑
i

ziJi

sum of all couplings at a given lattice site
(zi is the number of couplings of type i)

Saturation field:

µ0Hs =

(
gµB

kB

)−1

(EFM − EAFM)

energy difference between the ferro- and
antiferromagnetic states

example: µ0Hs = (kB/gµB)× 8J × S
for a square-lattice antiferromagnet

θ and Hs are
a first check of your calculated J’s

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 36 / 56
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Numerical simulations

In most cases, we can’t solve the spin model analytically

I but we can use numerical tools to simulate its magnetic response

ALPS = Algorithms and Libraries for Physics Simulations

Diagonalization: exact and sparse (Lanczos)

Monte Carlo: classical and quantum spin models

Density-matrix renormalization group

I Computationally not very efficient

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 37 / 56
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Numerical simulations: before you start

Define your lattice:

bonds (interactions between the atoms)

boundary conditions – open or periodic

I avoid frustration
by periodic boundary conditions

There will be mistakes. Verify your input:

choose a special interaction regime
and reduce your spin lattice
to something simple (dimer, chain, etc.)

Jt1 only −→ dimer
Jd only −→ dimer + 2 free spins

check Curie-Weiss, saturation field,
and overall behavior

the program may not tell you how different
quantities are normalized, but there are
enough tools to check that out

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 38 / 56
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Numerical simulations: finite-size effects

Approximate infinite lattice
by a finite cluster with

periodic boundary conditions

I Susceptibility: it’s enough to use ∼ 6 unit cells along each dimension

I Ordered moment: you won’t get the exact result, use finite-size scaling

I Ordering temperature: use universal scaling (Binder cumulant)

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 39 / 56



Numerical simulations: what to expect?

Simulation is done for a finite cluster
always a small spin gap
no real long-range ordering occurs

Simulation is done for fixed values of Ji
you obtain a sequence of data points, not an analytical expression for the fitting

Dimensionless parameters are used

T ∗ = kBT/J

χ∗ =

(
NAg

2µ2
B

kB

)−1

× χ J

g and J are always
the adjustable (fitting) parameters

Example: J1 = 100 K and J2 = 150 K
Define J1 = 1, J2 = 1.5, and keep J1 as
an adjustable parameter (energy scale)

Each J2/J1 requires another simulation

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 40 / 56
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Analytical fitting expressions

Magnetic molecules – exact solution:

dimers

trimers / triangles

tetramers

[Coord. Chem. Rev. 5, 313 (1970)]
contains most of them

Periodic systems (typically in 1D):

interpolation of simulated data,
D.C. Johnston and his poor
co-authors

uniform and alternating chains
[Phys. Rev. B 61, 9558–9606 (2000)]

spin ladders
[arXiv:cond-mat/0001147], 63 pages
may not be accurate

Those expressions are valid in the whole T -range
There are also expressions valid at T ≥ J only (HTSE, will be discussed later)

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 41 / 56
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Exact diagonalization

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 42 / 56



Diagonalization: example of the spectrum

Calculation by Lanczos diagonalization
Experiment

inelastic neutron scattering
[Nature Phys. 12, 224 (2016)]

Full (exact) diagonalization – whole energy spectrum (L ≤ 18 in ALPS)

Sparse (Lanczos) diagonalization – low-energy states only (L ≤ 32 in ALPS)

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 43 / 56



Monte-Carlo: quantum vs. classical

Quantum Monte-Carlo (loop, dirloop sse, worm) – quantum spin Hamiltonian
only lattices without frustration

Classical Monte-Carlo (spinmc) – classical spin Hamiltonian
any lattice you want, but no quantum effects

Quantum

Ĥ =
∑
〈ij〉

Jij Ŝi Ŝj

Ŝi , Ŝj are operators

difficult to handle,
but interesting physics

Classical

Ĥ =
∑
〈ij〉

Jij Si Sj

Si , Sj are vectors

easy to handle,
but typically mundane physics

I Classical spin is not quantized

I Classical approximation is good for S →∞,
and not too bad for large spins

I Spins- 1
2

are quantum

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 44 / 56



Monte-Carlo: quantum vs. classical

Quantum Monte-Carlo (loop, dirloop sse, worm) – quantum spin Hamiltonian
only lattices without frustration

Classical Monte-Carlo (spinmc) – classical spin Hamiltonian
any lattice you want, but no quantum effects

Quantum

Ĥ =
∑
〈ij〉

Jij Ŝi Ŝj

Ŝi , Ŝj are operators

difficult to handle,
but interesting physics

Classical

Ĥ =
∑
〈ij〉

Jij Si Sj

Si , Sj are vectors

easy to handle,
but typically mundane physics

I Classical spin is not quantized

I Classical approximation is good for S →∞,
and not too bad for large spins

I Spins- 1
2

are quantum
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Quantum vs. classical: dimer case

Spin dimer:
Ĥ = J Ŝ1 Ŝ2

Classical case

Quantum case

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 45 / 56



Quantum vs. classical: dimer case

Spin dimer:
Ĥ = J Ŝ1 Ŝ2

Classical case Quantum case

Different energy splitting
(magnetic interaction energy becomes much larger in the quantum limit)

Different nature of the ground state (mixing = quantum fluctuations)
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Quantum vs. classical: dimer case

Spin dimer:
Ĥ = J Ŝ1 Ŝ2

Classical case Quantum case

Classical ground-state energy can be improved by replacing S2 with S(S + 1) = 3
4

ALPS does exactly this when you use convention=quantum in spinmc
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Classical vs. quantum

Classical states

|↑↑〉, |↓↓〉, etc.

Quantum state

1√
2

(|↑↓〉 − |↓↑〉)

Image credits: WiseMan42, Kiedd 07 (Wikimedia Commons)
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Quantum effects in thermodynamics

I Never use classical Monte-Carlo for spins- 1
2

I Spins- 5
2

may be OK, although it’s better to do quantum whenever you can
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Quantum effects in thermodynamics

Entropy

Smag(T ) =

∞∫
0

Cp

T
dT

Quantum limit:

Smag = R ln(2S + 1)

Classical limit:

Smag →∞

I Quantum and classical heat capacities are largely different for any value of S
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Monte-Carlo: example

10 0 3

Field (T)

Normalized magnetization ( / )M M
s

6

T = 1.4 K

9 12

0.2

0.4

0.6

0.8

1.0

0.00

1

2

3

4

5

Temperature (K)

Magnetic susceptibility (10 emu/mol)-2

1 00

m0H = 0.1 T

Sr2VO(PO4)2

Monte-Carlo fits
to χ(T ) and M(H)

J1 = −8.3 K

J2 = 5.9 K

g = 1.97
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Ordered moment

M =
∑

i mi = 0
Mst =

∑
i mi e

i k r = N ×mi ,

k = (π2 ,
π
2 )

total magnetization staggered magnetization

Alternatively, staggered magnetization for sublattices A and B can be defined as

Mst =
1

N

(∑
i∈A

Si −
∑
j∈B

Sj

)
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Ordered moment: example

spin- 1
2

, Mst = 1.0µB (classical)

Mst = 0.6µB (2D), Mst = 0.85µB (3D)

even lower value in dioptase −→ low connectivity

I Staggered magnetization is equivalent to ordered magnetic moment
measured by neutron diffraction (up to the orbital moment and covalency effects)

I Classical limit: Mst = S

I Quantum limit: Mst < S
the difference between S and Mst gauges quantum effects (quantum fluctuations)
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Transition temperatures

You may not find clear signatures of a Néel temperature in simulated χ(T )

You will find it very difficult to get an accurate TN from Cp(T )

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 52 / 56



Transition temperatures

I Use Binder cumulant, B(T ) = 〈M2〉/〈M〉2 (Mst for antiferromagnets)

I B(T ) does not depend on the system size L at T = TN ,

I The crossing point of simulations performed for different system sizes yields TN

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 52 / 56
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Mermin-Wagner theorem

David Mermin
born 1935

Herbert Wagner
born 1935

Continuous symmetries can not be spontaneously broken
at finite temperature in systems with sufficiently

short-range interactions in dimensions d ≤ 2

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 53 / 56



Mermin-Wagner theorem

David Mermin
born 1935

Herbert Wagner
born 1935

Human-readable version:

No long-range order in Heisenberg magnets at T 6= 0 in 1D and 2D

It only makes sense to calculate TN of a 3D Heisenberg magnet

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 53 / 56



General strategy

Non-frustrated systems: use quantum Monte-Carlo

Frustrated systems:

Large spin −→ classical Monte-Carlo

Small spin, 0D −→ exact diagonalization

Small spin, 1D −→ exact diagonalization

Small spin, 2D −→ exact diagonalization + caution

or HTSE

Small spin, 3D −→ you’re doomed, try high-temperature series expansion (HTSE)

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 54 / 56
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High-temperature series expansion

HTSE = expansion of χ in powers of 1/T , reasonable at high-T only
with 10-12th order expansion extending down to T ∼ J becomes possible

Coefficients are numerous and are to be determined numerically

Use the HTE code [http://wasd.urz.uni-magdeburg.de/jschulen/HTE/]

Experimental data up to high temperatures are essential

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 55 / 56
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Summary

What can we measure?

I Magnetization (+susceptibility)

I Specific heat

I Neutron diffraction

What can we calculate?

I Parameters of interest

I How to calculate?

I What to observe?

How to bring this together?

I Analytical solutions

I Numerical simulations

I Classical approximation

What can we measure? What can we calculate? How to bring this together? Alexander Tsirlin / Augsburg 56 / 56


	What can we measure?
	What can we calculate?
	How to bring this together?

