Structure-property relationships in magnetism

Alexander Tsirlin

Experimental Physics VI, Center for Electronic Correlations and Magnetism University of Augsburg, Germany

University of Lille, France
November 23, 2018

General approach

General approach

General approach

- Correlate experimental magnetic behavior with the microscopic (model) parameters
- Correlate the microscopic parameters with structural features
- Structure-properties relationship

General approach

- Correlate experimental magnetic behavior with the microscopic (model) parameters
- Correlate the microscopic parameters with structural features
- Structure-properties relationship

What can we measure?

- Magnetization (+susceptibility)
- Specific heat
- Neutron diffraction

What can we calculate?

- Parameters of interest
- How to calculate?
- What to observe?

How to bring this together?

- Analytical solutions
- Numerical simulations
- Classical approximation

Magnetic susceptibility

- Usually the easiest thing to measure
- Can be done on powder, polycrystalline pieces, single crystals, even thin films
- Used to determine nature of magnetism, characteristic temperatures, transitions...

Magnetic susceptibility

- Usually the easiest thing to measure
- Can be done on powder, polycrystalline pieces, single crystals, even thin films
- Used to determine nature of magnetism, characteristic temperatures, transitions...
- Problem: signal scales with the magnetic moment of the phase, not only with its volume fraction

Magnetic susceptibility: caveats

- Ferromagnetic phases produce most of the signal, even if their amount is tiny - Ferromagnetic contributions are suppressed by the field, but it does not alwavs help

Magnetic susceptibility: caveats

- Ferromagnetic phases produce most of the signal, even if their amount is tiny
- Ferromagnetic contributions are suppressed by the field, but it does not always help

Magnetic susceptibility: caveats

- Ferromagnetic phases produce most of the signal, even if their amount is tiny
- Ferromagnetic contributions are suppressed by the field, but it does not always help

Magnetic susceptibility: local magnetic moment

- Curie-Weiss fit $[\chi=C /(T-\theta)]$ at high temperatures returns:
- effective moment $\mu_{\text {eff }}$ calculated from $C=N_{A} g^{2} \mu_{\text {eff }}^{2} / 3 k_{B}$
- Curie-Weiss temperature θ (energy scale of magnetic interactions)

Magnetic susceptibility: local magnetic moment

- Curie-Weiss fit $[\chi=C /(T-\theta)]$ at high temperatures returns:
- effective moment $\mu_{\text {eff }}$ calculated from $C=N_{A} g^{2} \mu_{\text {eff }}^{2} / 3 k_{B}$
- Curie-Weiss temperature θ (energy scale of magnetic interactions)
- Problem: how to choose the T range of the fit? (rely on $T_{\text {min }} \gg|\theta|$)

Never fit the data, where you suspect (or observe) foreign contributions!

Magnetic susceptibility: local magnetic moment

- Curie-Weiss fit $[\chi=C /(T-\theta)]$ at high temperatures returns:
- effective moment $\mu_{\text {eff }}$ calculated from $C=N_{A} g^{2} \mu_{\text {eff }}^{2} / 3 k_{B}$
- Curie-Weiss temperature θ (energy scale of magnetic interactions)
- Problem: how to choose the T range of the fit? (rely on $T_{\text {min }} \gg|\theta|$)
- Never fit the data, where you suspect (or observe) foreign contributions!

Magnetic susceptibility: identifying the transitions

- Magnetic transitions manifest themselves by kinks or humps,

Magnetic susceptibility: identifying the transitions

- Magnetic transitions manifest themselves by kinks or humps,

Magnetic susceptibility: identifying the transitions

- Magnetic transitions manifest themselves by kinks or humps, but sometimes they are hidden
- Fisher's heat capacity, $d(\chi T) / d T$, helps to identify them

Magnetic susceptibility: identifying the transitions

- Magnetic transitions manifest themselves by kinks or humps, but sometimes they are hidden
- Fisher's heat capacity, $d(\chi T) / d T$, helps to identify them

Magnetization vs. susceptibility

- MPMS/PPMS measure magnetic moment (magnetization) M that can be recalculated into magnetic susceptibility $\chi=d M / d H \sim M / H$
- $\chi(T)$ and $M(H)$ are inextricably intertwined

Magnetization: saturation

- Saturation magnetization gauges the local moment:
- $\mu_{\mathrm{eff}}=g \sqrt{S(S+1)}$ (effective moment, high- T)
- $M_{s}=g S \mu_{B}$ (local moment, low- T)
- Saturation field is a measure of (antiferromagnetic) exchange couplings

Specific heat

- Not too difficult to measure, but easy to make a mistake (contributions of the platform and grease should be subtracted carefully)
- Solid piece of a material is required (powder is difficult)
- Signal scales with the volume fraction of the phase (minor impurities do not matter)

Specific heat: confirm phase transitions

Specific heat: confirm phase transitions

- When you see signatures of a transition in both χ and C_{p}, you can be rather confident it is intrinsic

Specific heat: confirm phase transitions

- When you see signatures of a transition in both χ and C_{p}, you can be rather confident it is intrinsic
- But: low-D antiferromagnets may show very weak of absent transition anomalies

Specific heat: low- T contributions

- Phonons: $C_{p} \sim T^{3}$ (always there!)
- Heisenberg antiferromagnet: $C_{p} \sim T^{3}$
- Heisenberg ferromagnet: $C_{p} \sim T^{\frac{3}{2}}$
- Spin gap: $C_{p} \sim \exp (-\Delta / T)$
- Low-temperature specific heat probes characteristic magnetic excitations
- The data below 1.8 K may be needed (PPMS with ${ }^{3} \mathrm{He}$ insert)
- Nevertheless, it helps to check C_{p} / T even above 1.8 K ;

Specific heat: low- T contributions

[New J. Phys. 16, 093011 (2014)]

- Phonons: $C_{p} \sim T^{3}$ (always there!)
- Heisenberg antiferromagnet: $C_{p} \sim T^{3}$
- Heisenberg ferromagnet: $C_{p} \sim T^{\frac{3}{2}}$
- Spin gap: $C_{p} \sim \exp (-\Delta / T)$
- Other power laws: you might have found something interesting!
$C_{p} \sim T \quad \longrightarrow$ gapless spin liquid
- Low-temperature specific heat probes characteristic magnetic excitations
- The data below 1.8 K may be needed (PPMS with ${ }^{3} \mathrm{He}$ insert)
- Nevertheless, it helps to check C_{p} / T even above 1.8 K ; finite zero-temperature value means you have an unusual magnet, or simply a metal...

- Type of magnetic order (you get from the experiment)
- Size of the ordered moment (need an idea in advance)

Ordered moment is important

Ordered moment is important

- $I_{\text {mag }} \sim \mu^{2}$ and can be very low, especially for spin- $\frac{1}{2}$
- Always choose the right diffractometer (long wavelength, high flux)

- Type of magnetic order (you get from the experiment)
- Size of the ordered moment (need an idea in advance)

Successful beamtime proposal should include:

- Transition temperatures confirmed by thermodynamic measurements (susceptibility, specific heat)
- Estimate of the ordered moment (Curie-Weiss effective moment, saturation magnetization)

What can we measure?

- Magnetization (. susceptibility)
- Specific heat
- Neutron diffraction

What can we calculate?

- Parameters of interest
- How to calculate?
- What to observe?

[^0]
Spin Hamiltonian

$$
\hat{H}=\sum_{\langle i j\rangle} J_{i j} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}+\sum_{\langle i j\rangle} \mathbf{D}_{i j}\left[\hat{\mathbf{S}}_{i} \times \hat{\mathbf{S}}_{j}\right]+\sum_{\langle i j\rangle} \hat{\mathbf{S}}_{i} \Gamma_{i j} \hat{\mathbf{S}}_{j}+\sum_{i} A_{i} \hat{S}_{i z}^{2}
$$

- $J_{i j}$ - isotropic (Heisenberg) exchange; normally, this is the leading term
- $\mathbf{D}_{i j}$ - Dzyaloshinsky-Moriya interactions (3 components)
- $\Gamma_{i j}$ - symmetric part of the anisotropy (5 components)
- A_{i} - single-ion anisotropy
- All richness of the magnetic behavior is there, but the model is usually too "rich" to be tractable

Spin Hamiltonian

$$
\hat{H}=\sum_{\langle i j\rangle} J_{i j} \hat{\mathbf{S}}_{i} \hat{\mathbf{s}}_{j}+\sum_{\langle i j\rangle} \mathbf{D}_{i j}\left[\hat{\mathbf{S}}_{i} \times \hat{\mathbf{S}}_{j}\right]+\sum_{\langle i j\rangle} \hat{\mathbf{s}}_{i} \Gamma_{i j} \hat{\mathbf{s}}_{j}+\sum_{i} A_{i} \hat{S}_{i z}^{2}
$$

- $J_{i j}$ - isotropic (Heisenberg) exchange; normally, this is the leading term
- $\mathbf{D}_{i j}$ - Dzyaloshinsky-Moriya interactions (3 components)
- $\Gamma_{i j}$ - symmetric part of the anisotropy (5 components)
- A_{i} - single-ion anisotropy
- All richness of the magnetic behavior is there, but the model is usually too "rich" to be tractable
- Use only the first term unless you are interested in the magnetic moment direction, or observe anisotropic effects experimentally (very different behavior for different field directions, spin canting...)

Heisenberg model

malachite, $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$ [Phys. Rev. B 88, 224406 (2013)]

$\mathrm{CdCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ [Phys. Rev. B 85, 064404 (2012)]

$$
\hat{H}=\sum_{\langle i j\rangle} J_{i j} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}
$$

$J_{i j}$ are exchange integrals $=$ magnetic interaction energies denoted by bonds of a spin lattice

Heisenberg model

$$
\hat{H}=\sum_{\langle i j\rangle} J_{i j} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}
$$

$J_{i j}$ are exchange integrals $=$ magnetic interaction energies denoted by bonds of a spin lattice

Heisenberg model

$$
\hat{H}=\sum_{\langle i j\rangle} J_{i j} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}
$$

$J_{i j}$ are exchange integrals $=$ magnetic interaction energies denoted by bonds of a spin lattice

- The model is quantum, i.e., it contains spin operators, not simply spin vectors
- Quantum features are important when we consider the magnetic behavior
- However, we usually disregard them when calculating $J_{i j}$'s from DFT

Two ways to extract the exchange parameters

- We usually do DFT
- It is also possible to use quantum chemistry (at least the MRCI level required), but then you are restricted to small clusters (long-range interactions are hard to get)

Two ways to extract the exchange parameters

- We usually do DFT
- It is also possible to use quantum chemistry (at least the MRCI level required), but then you are restricted to small clusters (long-range interactions are hard to get)

Mapping approach (total energies)

- Exchange parameters from total energies of fixed spin configurations
- Empirical corrections (DFT+U) or hybrid functionals required

Can be applied to a wide range of materials "Shut un and calculate" twen of appreach

Model approach (electron hoppings)

- Take only free-electron part from DFT
- Add Hubbard U on the model level $\hat{H}=\sum_{i j} t_{i j} \hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}+U \sum_{i} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow}$
- Most useful for one-orbital cases

Two ways to extract the exchange parameters

- We usually do DFT
- It is also possible to use quantum chemistry (at least the MRCI level required), but then you are restricted to small clusters (long-range interactions are hard to get)

Mapping approach (total energies)

- Exchange parameters from total energies of fixed spin configurations
- Empirical corrections (DFT+U) or hybrid functionals required
- Can be applied to a wide range of materials
- "Shut up and calculate" type of approach

Model approach (electron hoppings)

- Take only free-electron part from DFT
- Add Hubbard U on the model level $\hat{H}=\sum_{i j} t_{i j} \hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}+U \sum_{i} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow}$
- Most useful for one-orbital cases
- More reliable and gives better insight

Mapping approach

$$
E=\sum_{\langle i j\rangle} J_{i j} S_{i} S_{j}
$$

In a nutshell, $J \propto J_{\text {FM }}-J_{\text {AFM }}$

Mapping approach

$$
E=\sum_{\langle i j\rangle} J_{i j} S_{i} S_{j}
$$

In a nutshell, $J \propto J_{\text {FM }}-J_{\text {AFM }}$
Advanced version:

$$
J=\frac{E_{\uparrow \uparrow}+E_{\downarrow \downarrow}-E_{\uparrow \downarrow}-E_{\downarrow \uparrow}}{4 S^{2}}
$$

Mapping approach

$$
E=\sum_{\langle i j\rangle} J_{i j} S_{i} S_{j}
$$

In a nutshell, $J \propto J_{\text {FM }}-J_{\text {AFM }}$
Advanced version:

$$
J=\frac{E_{\uparrow \uparrow}+E_{\downarrow \downarrow}-E_{\uparrow \downarrow}-E_{\downarrow \uparrow}}{4 S^{2}}
$$

- Very easy and straight-forward, but you need accurate total energies
- Hybrid functionals may be OK, but you'll have to calculate large supercells (50+ atoms), so you may not like hybrid functionals for this particular problem
- DFT $+U$ is faster and comparable in accuracy, especially if you choose the right U
- Remember to use $J_{H} \neq 0$ (Hund's exchange is there and may be important) [Phys. Rev. B 79, 035103 (2009)]
- Don't underestimate the (acute) problem of the double-counting correction [LDAUTYPE in VASP], see also [Phys. Rev. B 84, 144429 (2011)]

Mapping approach

In a nutshell, $J \propto J_{\text {FM }}-J_{\text {AFM }}$
Advanced version:

$$
J=\frac{E_{\uparrow \uparrow}+E_{\downarrow \downarrow}-E_{\uparrow \downarrow}-E_{\downarrow \uparrow}}{4 S^{2}}
$$

Choice of Hubbard U in DFT $+U$:

- Ask Olivier
- Ask recent literature
- Use several U values and choose the one that better fits (your) experiment

Mapping approach

In a nutshell, $J \propto J_{\text {FM }}-J_{\text {AFM }}$

> Advanced version:

$$
J=\frac{E_{\uparrow \uparrow}+E_{\downarrow \downarrow}-E_{\uparrow \downarrow}-E_{\downarrow \uparrow}}{4 S^{2}}
$$

Choice of Hubbard U in DFT $+U$:

- Ask Olivier
- Ask recent literature
- Use several U values and choose the one that better fits (your) experiment

Mapping approach

In a nutshell, $J \propto J_{\text {FM }}-J_{\text {AFM }}$

Advanced version:

$$
J=\frac{E_{\uparrow \uparrow}+E_{\downarrow \downarrow}-E_{\uparrow \downarrow}-E_{\downarrow \uparrow}}{4 S^{2}}
$$

Choice of Hubbard U in DFT $+U$:

- Ask Olivier
- Ask recent literature
- Use several U values and choose the one that better fits (your) experiment

Mapping approach

In a nutshell, $J \propto J_{\text {FM }}-J_{\text {AFM }}$

> Advanced version:

$$
J=\frac{E_{\uparrow \uparrow}+E_{\downarrow \downarrow}-E_{\uparrow \downarrow}-E_{\downarrow \uparrow}}{4 S^{2}}
$$

Choice of Hubbard U in DFT $+U$:

- Ask Olivier
- Ask recent literature
- Use several U values and choose the one that better fits (your) experiment
- Everyone has his/her own U value. That's normal. Take it easy!
- Philosophical remark: We are not doing true ab initio here. One may be more $a b$ initio with quantum chemistry, but you will also find junctures, where you have to look up some experimental data before you can really "predict" anything

Multi-orbital Hubbard model

$$
\begin{gathered}
\hat{H}_{\text {electronic }}=\sum_{i, j, \sigma} t_{i j} \hat{C}_{i \sigma}^{+} \hat{C}_{j \sigma}+\sum_{i} U_{\text {eff }} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow} \\
i \text { and } j \text { label sites } \\
\hat{H}_{\text {spin }}=\sum_{i, j} J_{i j}^{\mathrm{AFM}} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}
\end{gathered}
$$

One-orbital model

```
        \Downarrow
    JAFM
at t<< U eff
```


Multi-orbital Hubbard model

$$
\begin{gathered}
\hat{H}_{\text {electronic }}=\sum_{i, j, \sigma} t_{i j} \hat{C}_{i \sigma}^{+} \hat{C}_{j \sigma}+\sum_{i} U_{\text {eff }} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow} \\
i \text { and } j \text { label sites } \\
\hat{H}_{\text {spin }}=\sum_{i, j} J_{i j}^{\mathrm{AFM}} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}
\end{gathered}
$$

One-orbital model

$$
\begin{gathered}
\Downarrow \\
J^{\text {AFM }} \\
\text { at } t \ll U_{\text {eff }}
\end{gathered}
$$

$$
\begin{gathered}
\hat{H}_{\text {electronic }}=\sum_{\substack{i, j, \sigma \\
\alpha \neq \beta}} t_{i j}^{\alpha \rightarrow \beta} \hat{C}_{i \alpha \sigma}^{+} \hat{C}_{j \beta \sigma}+\sum_{i \alpha} U_{\text {eff }} \hat{n}_{i \uparrow}^{\alpha} \hat{n}_{i \downarrow}^{\alpha}+ \\
+\sum_{i, \sigma, \alpha}\left(\varepsilon_{0}+\Delta_{\alpha}\right) \hat{n}_{i \sigma}^{\alpha}-\sum_{\substack{i, \sigma, \sigma^{\prime} \\
\alpha \neq \beta}} \frac{J_{H}}{2}\left(\hat{C}_{i \alpha \sigma}^{+} \hat{C}_{i \alpha \sigma^{\prime}} \hat{C}_{i \beta \sigma^{\prime}}^{+} \hat{C}_{i \beta \sigma}+\text { H.c. }\right)
\end{gathered}
$$

i and j label sites, α and β label orbitals
Δ_{α} are energy splittings, J_{H} is the Hund's coupling

$$
\hat{H}_{\mathrm{spin}}=\sum_{i, j} J_{i j} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}
$$

$$
\begin{gathered}
J=J^{\mathrm{AFM}}+J^{\mathrm{FM}} \\
\text { at } t \ll U_{\text {eff }}
\end{gathered}
$$

Kugel-Khomskii model

Electron hops to the half-filled orbital

$$
J^{\mathrm{AFM}}=4 t^{2} / U
$$

Electron hops to the half-filled orbital

$$
J^{\text {AFM }}=4 t^{2} / U
$$

Electron hops to an empty orbital

$$
J^{\mathrm{FM}}=-\frac{4 t^{2}}{(U+\Delta)\left(U+\Delta-J_{H}\right)}
$$

J_{H} is the on-site Hund's coupling Δ is the crystal-field splitting

Kugel-Khomskii model

Electron hops to the half-filled orbital

$$
J \text { AFM }=4 t^{2} / U
$$

Electron hops to an empty orbital

$$
J^{\mathrm{FM}}=-\frac{4 t^{2}}{(U+\Delta)\left(U+\Delta-J_{H}\right)}
$$

J_{H} is the on-site Hund's coupling
Δ is the crystal-field splitting

- Use the uncorrelated band structure (no need to mess around with DFT+U)
- The results still depend on U, but this dependence is explicit now, and, in some cases, just unimportant: $J_{2} / J_{1} \sim t_{2} / t_{1}$
- Clear microscopic picture behind the magnetic interactions

Example: $\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$

- $\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$ is magnetic insulator, $\mathrm{V}^{4+}=d^{1}$
- We obtained metallic band structure because we have not used U That was intentional!

Example: $\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}, \mathrm{~V}^{4+}$ is magnetic

- Identify the magnetic orbital(s) [those lying close to the Fermi level]
- Check that crystal-field levels make sense
- Introduce t's into the Kugel-Khomskii or similar formulas

Example: $\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}, \mathrm{~V}^{4+}$

- Identify the magnetic orbital(s) [those lying close to the Fermi level]
- Check that crystal-field levels make sense
- Use Wannier functions to extract orbital energies (ε) and electron hoppings (t)
- Introduce t 's into the Kugel-Khomskii or similar formulas

VO_{6} octahedron

$J_{1}=-4.7 \mathrm{~K} \quad$ ferromagnetic \quad no overlap of the magnetic orbitals $J_{2}=9.7 \mathrm{~K} \quad$ antiferromagnetic small but non-negligible overlap

VO_{6} octahedron

$$
\begin{array}{ccc}
J_{1}=-4.7 \mathrm{~K} & \text { ferromagnetic } & \text { no overlap of the magnetic orbitals } \\
J_{2}=9.7 \mathrm{~K} & \text { antiferromagnetic } & \text { small but non-negligible overlap }
\end{array}
$$

Magnetic orbital is perpendicular to the -V-V-V- chain

$\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$: model vs. mapping approaches

Model approach	-4.7	9.7
DFT $+U, U_{d}=4 \mathrm{eV}$	2.5	15.7
DFT $+U, U_{d}=6 \mathrm{eV}$	-8.1	13.2
Experiment	-8.3	5.9

$\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$: model vs. mapping approaches

Model approach	-4.7	9.7
DFT $+U, U_{d}=4 \mathrm{eV}$	2.5	15.7
DFT $+U, U_{d}=6 \mathrm{eV}$	-8.1	13.2
Experiment	-8.3	5.9

28 atoms, 5 hours
56 atoms, three configurations, ~ 2 days for each U_{d} value

- Remark for experts: calculations were done in the full-potential code (FPLO) VASP will be much faster, but may be (even) less accurate

$\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}$: model vs. mapping approaches

Model approach	-4.7	9.7
DFT $+U, U_{d}=4 \mathrm{eV}$	2.5	15.7
DFT $+U, U_{d}=6 \mathrm{eV}$	-8.1	13.2
Experiment	-8.3	5.9

28 atoms, 5 hours
56 atoms, three configurations, ~ 2 days for each U_{d} value years...

- Remark for experts: calculations were done in the full-potential code (FPLO) VASP will be much faster, but may be (even) less accurate

Model vs. mapping approaches

- Model approach is most convenient when you have only one magnetic orbital viz. spin- $\frac{1}{2}: \mathrm{Cu}^{2+}, \mathrm{V}^{4+}, \mathrm{Ti}^{3+}$, etc.
- Mapping approach can be used for any magnetic ion without thinking how many orbitals it has

> But: orbitally degenerate scenarios are difficult in DFT $+U\left(\mathrm{Ti}^{3+}, \mathrm{Cr}^{2+}\right.$, etc.), and you can strongly benefit from the Kugel-Khomskii description

Model vs. mapping approaches

- Model approach is most convenient when you have only one magnetic orbital viz. spin- $\frac{1}{2}: \mathrm{Cu}^{2+}, \mathrm{V}^{4+}, \mathrm{Ti}^{3+}$, etc.
- Mapping approach can be used for any magnetic ion without thinking how many orbitals it has
- But: orbitally degenerate scenarios are difficult in DFT $+U\left(\mathrm{Ti}^{3+}, \mathrm{Cr}^{2+}\right.$, etc. $)$, and you can strongly benefit from the Kugel-Khomskii description

Model vs. mapping approaches

- Model approach is most convenient when you have only one magnetic orbital viz. spin- $\frac{1}{2}: \mathrm{Cu}^{2+}, \mathrm{V}^{4+}, \mathrm{Ti}^{3+}$, etc.
- Mapping approach can be used for any magnetic ion without thinking how many orbitals it has
- But: orbitally degenerate scenarios are difficult in DFT $+U\left(\mathrm{Ti}^{3+}, \mathrm{Cr}^{2+}\right.$, etc. $)$, and you can strongly benefit from the Kugel-Khomskii description

Before you use DFT $+U$, especially for magnetic parameters:

- know what the occupation matrices are, and how to find them in the output
- know what the charge-transfer insulators are, and where they appear
- be cautious with $4 d$, don't try $5 d$ unless you know what you are doing
- don't use DFT $+U$ for metals!

Model vs. mapping approaches

- Model approach is most convenient when you have only one magnetic orbital viz. spin- $\frac{1}{2}: \mathrm{Cu}^{2+}, \mathrm{V}^{4+}, \mathrm{Ti}^{3+}$, etc.
- Mapping approach can be used for any magnetic ion without thinking how many orbitals it has
- But: orbitally degenerate scenarios are difficult in DFT $+U\left(\mathrm{Ti}^{3+}, \mathrm{Cr}^{2+}\right.$, etc. $)$, and you can strongly benefit from the Kugel-Khomskii description

Before you use DFT $+U$, especially for magnetic parameters:
know what the occupation matrices are, and how to find them in the output

- know what the charge-transfer insulators are, and where they appear
- be cautious with 4d, don't try $5 d$ unless you know what you are doing
- don't use DFT $+U$ for metals!
- Good news: in most of the problematic cases, DFT+ U will simply not converge
- Bad news: some non properly converged or otherwise flawed DFT $+U$ results have been published, see [J. Phys. Chem. A 114, 12345 (2010)] vs. [arXiv:1106.3665]

Sanity checks

- There is a chance your DFT($+U+$ whatever $)$ results will be wrong. What to do?

```
Calculate J's in different supercells, make sure that the results are consistent
Use model approach: look at the electron hoppings and make sure that there are
relevant hoppings for all strong J's
Rely on the general trends:
> Short-range vs. long-range
- Goodenough-Kanamori-Anderson rules
D Long-range interactions (super-superexchange) always have a reason
```


Sanity checks

- There is a chance your DFT($+U+$ whatever) results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
Rely on the general trends:
- Short-range vs. long-range
- Goodenough-Kanamori-Anderson rules
- Long-range interactions (super-superexchange) always have a reason

Sanity checks

- There is a chance your DFT($+U+$ whatever $)$ results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's

```
Rely on the general trends:
\ Short-range vs. long-range
- Goodenough-Kanamori-Anderson rules
LLong-range interactions (super-superexchange) always have a reason
```


Sanity checks

- There is a chance your DFT($+U+$ whatever $)$ results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
- Rely on the general trends:
- Short-range vs. long-range
- Goodenough-Kanamori-Anderson rules
- Long-range interactions (super-superexchange) always have a reason

Sanity checks

- There is a chance your DFT($+U+$ whatever $)$ results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
- Rely on the general trends:
- Short-range vs. long-range
- Goodenough-Kanamori-Anderson rules
- Long-range interactions (super-superexchange) always have a reason
- Size: exchange couplings decrease with the distance, but not exponentially, because ligands are strongly involved (superexchange)
- $J \simeq 100 \mathrm{~K}$ for the $\mathrm{Cu}-\mathrm{Cu}$ distance of $6 \AA$ is quite possible,
- but 400 K would be very unlikely
- Sign:
- Long-range couplings are normally antiferromagnetic
- Short-range couplings can be either ferro- or antiferromagnetic

Sanity checks

- There is a chance your DFT($+U+$ whatever $)$ results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
- Rely on the general trends:
- Short-range vs. long-range
- Goodenough-Kanamori-Anderson rules
- Long-range interactions (super-superexchange) always have a reason
- Size: exchange couplings decrease with the distance, but not exponentially, because ligands are strongly involved (superexchange)
- $J \simeq 100 \mathrm{~K}$ for the $\mathrm{Cu}-\mathrm{Cu}$ distance of $6 \AA$ is quite possible,
- but 400 K would be very unlikely
- Sign:
- Long-range couplings are normally antiferromagnetic
- Short-range couplings can be either ferro- or antiferromagnetic
- There are exceptions, but they confirm the rule

Goodenough-Kanamori-Anderson: 180° vs. 90°

$180^{\circ} \begin{aligned} & \mathrm{Sr}_{2} \mathrm{CuO}_{3} \\ & \text { superexchange }\end{aligned}$ $J \simeq 2800 \mathrm{~K}$

$\mathrm{Li}_{2} \mathrm{CuO}_{2}$
90° superexchange $J \simeq-230 \mathrm{~K}$

Exchange between half-filled d-orbitals:

- $180^{\circ}=$ strongly antiferromagnetic
- $90^{\circ}=$ weakly ferromagnetic

Goodenough-Kanamori-Anderson: 180° vs. 90°

- 180° superexchange - magnetic d-orbitals overlap with the same p-orbital
- 90° superexchange - magnetic d-orbitals overlap with different p-orbitals

Goodenough-Kanamori-Anderson: example

	$d_{\mathrm{Fe}-\mathrm{Fe}}(\AA)$	$\varphi(\mathrm{deg})$	$J(\mathrm{~K})$
J_{\perp}	3.06	97.4	3
J_{44}	2.91	94.2	9
J_{43}	3.39	119.2	38
$J_{43}{ }^{\prime}$	3.53	130.9	57
J_{33}	3.64	180	116

Super-super-...-superexchange

$$
\mathrm{Pb}_{2} \mathrm{Cu}(\mathrm{OH})_{4} \mathrm{Cl}_{2}
$$

interatomic distance of $5.88 \AA$

$$
J \simeq 35 \mathrm{~K}, T_{N}=11 \mathrm{~K}
$$

[Phys. Rev. B 87, 064404 (2013)]
linear $\mathrm{Cu}-\mathrm{O}-\mathrm{O}-\mathrm{Cu}$ pathways are favorable for the superexchange

Super-super-...-superexchange

$$
\mathrm{Pb}_{2} \mathrm{Cu}(\mathrm{OH})_{4} \mathrm{Cl}_{2}
$$

interatomic distance of $5.88 \AA$

$$
J \simeq 35 \mathrm{~K}, T_{N}=11 \mathrm{~K}
$$

[Phys. Rev. B 87, 064404 (2013)]
linear $\mathrm{Cu}-\mathrm{O}-\mathrm{O}-\mathrm{Cu}$ pathways are favorable for the superexchange

$$
\mathrm{BaV}_{3} \mathrm{O}_{8}
$$

interatomic distance of $7.43 \AA$

$$
J \simeq 38 \mathrm{~K}, T_{N}=6 \mathrm{~K}
$$

[Phys. Rev. B 89, 014405 (2014)] additional low-lying orbitals (here, d-orbitals of V^{+5})

What can we measure?

- Magnetization (+susceptibility)
- Specific heat
- Neutron diffraction

What can we calculate?
\Rightarrow Parameters of interest

- How to calculate?
- What to observe?

How to bring this together?

- Analytical solutions
- Numerical simulations
- Classical approximation

Heisenberg model

malachite, $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$ [Phys. Rev. B 88, 224406 (2013)]

$\mathrm{CdCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ [Phys. Rev. B 85, 064404 (2012)]

$$
\hat{H}=\sum_{\langle i j\rangle} J_{i j} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}
$$

$J_{i j}$ are exchange integrals $=$ magnetic interaction energies denoted by bonds of a spin lattice

- The model is quantum, i.e., it contains spin operators, not simply spin vectors
- Quantum features are important when we consider the magnetic behavior

Analytical results

- In most cases, we can't solve the spin model analytically
- but we can make approximations

Analytical results

- In most cases, we can't solve the spin model analytically
- but we can make approximations

Curie-Weiss temperature:

$$
\theta=\frac{S(S+1)}{3} \sum_{i} z_{i} J_{i}
$$

sum of all couplings at a given lattice site (z_{i} is the number of couplings of type i)

Analytical results

- In most cases, we can't solve the spin model analytically

- but we can make approximations

Curie-Weiss temperature:

$$
\theta=\frac{S(S+1)}{3} \sum_{i} z_{i} J_{i}
$$

sum of all couplings at a given lattice site (z_{i} is the number of couplings of type i)

Saturation field:

$$
\mu_{0} H_{s}=\left(\frac{g \mu_{B}}{k_{B}}\right)^{-1}\left(E_{\mathrm{FM}}-E_{\mathrm{AFM}}\right)
$$

energy difference between the ferro- and antiferromagnetic states

example: $\mu_{0} H_{s}=\left(k_{B} / g \mu_{B}\right) \times 8 J \times S$ for a square-lattice antiferromagnet

Analytical results

- In most cases, we can't solve the spin model analytically

- but we can make approximations

Curie-Weiss temperature:

$$
\theta=\frac{S(S+1)}{3} \sum_{i} z_{i} J_{i}
$$

sum of all couplings at a given lattice site (z_{i} is the number of couplings of type i)

Saturation field:

$$
\mu_{0} H_{s}=\left(\frac{g \mu_{B}}{k_{B}}\right)^{-1}\left(E_{\mathrm{FM}}-E_{\mathrm{AFM}}\right)
$$

energy difference between the ferro- and antiferromagnetic states
example: $\mu_{0} H_{s}=\left(k_{B} / g \mu_{B}\right) \times 8 J \times S$ for a square-lattice antiferromagnet

θ and H_{s} are
a first check of your calculated J's

Numerical simulations

- In most cases, we can't solve the spin model analytically
- but we can use numerical tools to simulate its magnetic response

[^1]Main Page
WIKI
navigation

- Main Page
- Setup and Installation
- Licensing
- Iutonals
- Community
- User Forum
- User Workshops
- Papers and Talks
- Developer Forum
- Developer

Workshops

Welcome to the ALPS project.

The ALPS project (Algorithms and Libraries for Physics Simulations) is an open source effort aiming at providing high-end simulation codes for strongly correlated quantum mechanical systems as well as C++ libraries for simplifying the development of such code. ALPS strives to increase soffware reuse in the physics community.

Announcement:
2017-01-16 : ALPS 2.3 .0 has been released
ALPS 2.1 has been released

ALPS $=$ Algorithms and Libraries for Physics Simulations

- Diagonalization: exact and sparse (Lanczos)
- Monte Carlo: classical and quantum spin models
- Density-matrix renormalization group

Numerical simulations

- In most cases, we can't solve the spin model analytically
- but we can use numerical tools to simulate its magnetic response

[^2]Main Page
WIKI
navigation

- Main Page
- Setup and Installation
- Licensing
m Tutorials
- Community
- User Forum
- User Workshops
- Papers and Talks
- Developer Forum
- Developer

Workshops

Welcome to the ALPS project.

The ALPS project (Algorithms and Libraries for Physics Simulations) is an open source effort aiming at providing high-end simulation codes for strongly correlated quantum mechanical systems as well as C++ libraries for simplifying the development of such code. ALPS strives to increase soffware reuse in the physics community.

Announcement:
2017-01-16 : ALPS 2.3 .0 has been released
ALPS 2.1 has been released

ALPS $=$ Algorithms and Libraries for Physics Simulations

- Diagonalization: exact and sparse (Lanczos)
- Monte Carlo: classical and quantum spin models
- Density-matrix renormalization group
- Computationally not very efficient

Numerical simulations: before you start

Define your lattice:

- bonds (interactions between the atoms)
- boundary conditions - open or periodic by periodic boundary conditions

Numerical simulations: before you start

Define your lattice:

- bonds (interactions between the atoms)
- boundary conditions - open or periodic
- avoid frustration
by periodic boundary conditions

Numerical simulations: before you start

Define your lattice:

- bonds (interactions between the atoms)
- boundary conditions - open or periodic
- avoid frustration by periodic boundary conditions

There will be mistakes. Verify your input:

- choose a special interaction regime and reduce your spin lattice to something simple (dimer, chain, etc.)
$J_{t 1}$ only \longrightarrow dimer
J_{d} only \longrightarrow dimer +2 free spins
- check Curie-Weiss, saturation field, and overall behavior
- the program may not tell you how different quantities are normalized, but there are enough tools to check that out

$\mathrm{CdCu}_{2}\left(\mathrm{BO}_{3}\right)_{2}$ [Phys. Rev. B 85, 064404 (2012)]

Approximate infinite lattice
by a finite cluster with periodic boundary conditions

- Susceptibility: it's enough to use ~ 6 unit cells along each dimension
- Ordered moment: you won't get the exact result, use finite-size scaling
- Ordering temperature: use universal scaling (Binder cumulant)

Numerical simulations: what to expect?

- Simulation is done for a finite cluster always a small spin gap no real long-range ordering occurs you obtain a sequence of data points, not an analytical expression for the fitting

Numerical simulations: what to expect?

- Simulation is done for a finite cluster always a small spin gap no real long-range ordering occurs
- Simulation is done for fixed values of J_{i} you obtain a sequence of data points, not an analytical expression for the fitting

Numerical simulations: what to expect?

- Simulation is done for a finite cluster always a small spin gap no real long-range ordering occurs
- Simulation is done for fixed values of J_{i} you obtain a sequence of data points, not an analytical expression for the fitting

Dimensionless parameters are used

$$
\begin{gathered}
T^{*}=k_{B} T / J \\
\chi^{*}=\left(\frac{N_{A} g^{2} \mu_{B}^{2}}{k_{B}}\right)^{-1} \times \chi J
\end{gathered}
$$

- g and J are always the adjustable (fitting) parameters
- Example: $J_{1}=100 \mathrm{~K}$ and $J_{2}=150 \mathrm{~K}$ Define $J_{1}=1, J_{2}=1.5$, and keep J_{1} as an adjustable parameter (energy scale)
- Each J_{2} / J_{1} requires another simulation

Reduced susceptibility, χ^{*} (Phys. Rev. B 79, 214417 (2009)]

Analytical fitting expressions

Magnetic molecules - exact solution:

- dimers
- trimers / triangles
- tetramers
[Coord. Chem. Rev. 5, 313 (1970)] contains most of them

Analytical fitting expressions

Magnetic molecules - exact solution:

- dimers
- trimers / triangles
- tetramers
[Coord. Chem. Rev. 5, 313 (1970)] contains most of them

Periodic systems (typically in 1D):

- interpolation of simulated data, D.C. Johnston and his poor co-authors
- uniform and alternating chains [Phys. Rev. B 61, 9558-9606 (2000)]
- spin ladders
[arXiv:cond-mat/0001147], 63 pages may not be accurate

TABLE I. Fitted parameters for $\chi^{*}(t)$ of the $S=1 / 2$ antifenromagnetically coupled Heisenberg dimel $(\alpha=0)\left[\right.$ Eqs. (50) with $\left.\Delta_{\text {fit }}^{*}=1\right]$ and $\chi^{*}(t)$ and $C(t)$ [Eqs. (54)] for the uniform chain ($\alpha=1$). $\chi^{*}(t)$ Fit 1 for the uniform chain $(0.01 \leqslant t \leqslant 5)$ [Eqs. (50) with $\left.\Delta_{\text {fit }}^{*}=0\right]$ uses powers of $1 / t$ only, whereas $\chi^{*}(t)$ Fit 2 $(0 \leqslant t \leqslant 5)$ [Eqs. (53)] also incorporates logarithmic correction terms.

parameter	$\chi^{*}(\alpha=0)$	$\chi^{*}(\alpha=1)$ Fit 1	$\chi^{*}(\alpha=1)$ Fit 2	$C(\alpha=1)$
N_{1}	0.6342798982	-0.053837836	-0.240262331211	-0.018890951426
N_{2}	0.1877696166	0.097401365	0.451187371598	0.024709724025
N_{3}	0.03360361730	0.014467437	0.0125889356883	-0.0037086264240
N_{4}	0.003861106893	0.0013925193	0.0357903808997	0.0030159975962
N_{5}	0.0002733142974	0.00011393434	0.00801840643283	-0.00037946929995
N_{6}			0.00182319434072	0.000042683893992
N_{7}	C		0.0000533189078137	
N_{8}			0.000184003448334	
N_{81}			1.423476309767	
N_{82}			0.341607132329	
t_{1}			5.696020642244	
D_{1}		0.44616216	0.259737668789	-0.51889095143
D_{2}		0.32048245	0.581056205993	0.59657583453
D_{3}		0.13304199	0.261450372018	-0.15117343936
D_{4}		0.037184126	0.142680453011	0.074445241148
D_{2}		0.0028136088	0.0572246926066	-0.0024804135233

Analytical fitting expressions

Magnetic molecules - exact solution:

- dimers
- trimers / triangles
- tetramers
[Coord. Chem. Rev. 5, 313 (1970)] contains most of them

Periodic systems (typically in 1D):

- interpolation of simulated data, D.C. Johnston and his poor co-authors
- uniform and alternating chains [Phys. Rev. B 61, 9558-9606 (2000)]
- spin ladders
[arXiv:cond-mat/0001147], 63 pages may not be accurate

TABLE I. Fitted parameters for $\chi^{*}(t)$ of the $S=1 / 2$ antifenromagnetically coupled Heisenberg dimel $(\alpha=0)$ [Eqs. (50) with $\left.\Delta_{\text {fit }}^{*}=1\right]$ and $\chi^{*}(t)$ and $C(t)$ [Eqs. (54)] for the uniform chain $(\alpha=1), \chi^{*}(t)$ Fit 1 for the uniform chain $(0.01 \leqslant t \leqslant 5)$ [Eqs. (50) with $\left.\Delta_{\text {fit }}^{*}=0\right]$ uses powers of $1 / t$ only, whereas $\chi^{*}(t)$ Fit 2 $(0 \leqslant t \leqslant 5)$ [Eqs. (53)] also incorporates logarithmic correction terms.

parameter	$\chi^{*}(\alpha=0)$	$\chi^{*}(\alpha=1)$ Fit 1	$\chi^{*}(\alpha=1)$ Fit 2	$C(\alpha=1)$
N_{1}	0.6342798982	-0.053837836	-0.240262331211	-0.018890951426
N_{2}	0.1877696166	0.097401365	0.451187371598	0.024709724025
N_{3}	0.03360361730	0.014467437	0.0125889356883	-0.0037086264240
N_{4}	0.003861106893	0.0013925193	0.0357903808997	0.0030159975962
N_{5}	0.0002733142974	0.00011393434	0.00801840643283	-0.00037946929995
N_{6}			0.00182319434072	0.000042683893992
N_{7}	\cdots		0.0000533189078137	
N_{8}			0.000184003448334	
N_{81}			1.423476309767	
N_{82}			0.341607132329	
t_{1}			5.696020642244	
D_{1}		0.44616216	0.259737668789	-0.51889095143
D_{2}		0.32048245	0.581056205993	0.59657583453
D_{3}		0.13304199	0.261450372018	-0.15117343936
D_{4}		0.037184126	0.142680453011	0.074445241148
De		0.0028136088	0.0572246926066	-0.0024804135233

Those expressions are valid in the whole T-range There are also expressions valid at $T \geq J$ only (HTSE, will be discussed later)

Exact diagonalization

Diagonalization: example of the spectrum

Calculation by Lanczos diagonalization

Experiment

inelastic neutron scattering [Nature Phys. 12, 224 (2016)]

- Full (exact) diagonalization - whole energy spectrum ($L \leq 18$ in ALPS)
- Sparse (Lanczos) diagonalization - low-energy states only ($L \leq 32$ in ALPS)

Monte-Carlo: quantum vs. classical

- Quantum Monte-Carlo (loop, dirloop_sse, worm) - quantum spin Hamiltonian only lattices without frustration
- Classical Monte-Carlo (spinmc) - classical spin Hamiltonian any lattice you want, but no quantum effects

Monte-Carlo: quantum vs. classical

- Quantum Monte-Carlo (loop, dirloop_sse, worm) - quantum spin Hamiltonian only lattices without frustration
- Classical Monte-Carlo (spinmc) - classical spin Hamiltonian any lattice you want, but no quantum effects

$$
\begin{gathered}
\text { Quantum } \\
\hat{H}=\sum_{\langle i j\rangle} J_{i j} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}
\end{gathered}
$$

$\hat{\mathbf{S}}_{i}, \hat{\mathbf{S}}_{j}$ are operators difficult to handle, but interesting physics

Classical

$\hat{H}=\sum_{\langle i j\rangle} J_{i j} \mathbf{S}_{i} \mathbf{S}_{j}$
$\mathbf{S}_{i}, \mathbf{S}_{j}$ are vectors
easy to handle, but typically mundane physics

Monte-Carlo: quantum vs. classical

- Quantum Monte-Carlo (loop, dirloop_sse, worm) - quantum spin Hamiltonian only lattices without frustration
- Classical Monte-Carlo (spinmc) - classical spin Hamiltonian any lattice you want, but no quantum effects

$$
\begin{gathered}
\text { Quantum } \\
\hat{H}=\sum_{\langle i j\rangle} J_{i j} \hat{\mathbf{S}}_{i} \hat{\mathbf{S}}_{j}
\end{gathered}
$$

$\hat{\mathbf{S}}_{i}, \hat{\mathbf{S}}_{j}$ are operators difficult to handle, but interesting physics

Classical

$\hat{H}=\sum_{\langle i j\rangle} J_{i j} \mathbf{S}_{i} \mathbf{S}_{j}$
$\mathbf{S}_{i}, \mathbf{S}_{j}$ are vectors
easy to handle, but typically mundane physics

- Classical spin is not quantized
- Classical approximation is good for $S \rightarrow \infty$, and not too bad for large spins
\rightarrow Spins- $\frac{1}{2}$ are quantum

Quantum vs. classical: dimer case

Spin dimer:
$\hat{H}=J \hat{\mathbf{S}}_{1} \hat{\mathbf{S}}_{2}$

Classical case

Quantum vs. classical: dimer case

Spin dimer:
$\hat{H}=J \hat{\mathbf{S}}_{1} \hat{\mathbf{S}}_{2}$

Classical case

Quantum case

- Different energy splitting (magnetic interaction energy becomes much larger in the quantum limit)
- Different nature of the ground state (mixing $=$ quantum fluctuations)

Quantum vs. classical: dimer case

Spin dimer:
$\hat{H}=J \hat{\mathbf{S}}_{1} \hat{\mathbf{S}}_{2}$

Classical case

Quantum case

- Classical ground-state energy can be improved by replacing S^{2} with $S(S+1)=\frac{3}{4}$ ALPS does exactly this when you use convention=quantum in spinmc

Classical vs. quantum

Classical states
$|\uparrow \uparrow\rangle,|\downarrow \downarrow\rangle$, etc.

Quantum state

$$
\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)
$$

Image credits: WiseMan42, Kiedd 07 (Wikimedia Commons)

Quantum effects in thermodynamics

- Never use classical Monte-Carlo for spins- $\frac{1}{2}$

Spins- $\frac{5}{2}$ may be OK, although it's better to do quantum whenever you can

Quantum effects in thermodynamics

- Never use classical Monte-Carlo for spins- $\frac{1}{2}$
- Spins- $\frac{5}{2}$ may be OK, although it's better to do quantum whenever you can

Quantum effects in thermodynamics

- Quantum and classical heat capacities are largely different for any value of S

Monte-Carlo: example

$$
\mathrm{Sr}_{2} \mathrm{VO}\left(\mathrm{PO}_{4}\right)_{2}
$$

Monte-Carlo fits
to $\chi(T)$ and $M(H)$

$$
\begin{gathered}
J_{1}=-8.3 \mathrm{~K} \\
J_{2}=5.9 \mathrm{~K} \\
g=1.97
\end{gathered}
$$

Ordered moment

$$
M=\sum_{i} m_{i}=0
$$

total magnetization

$$
\begin{gathered}
M_{\mathrm{st}}=\sum_{i} m_{i} e^{i \mathbf{k r}}=N \times m_{i}, \\
\mathbf{k}=\left(\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{gathered}
$$

staggered magnetization

Alternatively, staggered magnetization for sublattices A and B can be defined as

$$
M_{\mathrm{st}}=\frac{1}{N}\left(\sum_{i \in A} \mathbf{S}_{i}-\sum_{j \in B} \mathbf{s}_{j}\right)
$$

Ordered moment: example

$$
\begin{gathered}
\text { spin- } \frac{1}{2}, M_{\mathrm{st}}=1.0 \mu_{B}(\text { classical }) \\
M_{\mathrm{st}}=0.6 \mu_{B}(2 \mathrm{D}), M_{\mathrm{st}}=0.85 \mu_{B}(3 \mathrm{D})
\end{gathered}
$$

even lower value in dioptase \longrightarrow low connectivity

- Staggered magnetization is equivalent to ordered magnetic moment measured by neutron diffraction (up to the orbital moment and covalency effects)
- Classical limit: $M_{\text {st }}=S$
- Quantum limit: $M_{\text {st }}<S$ the difference between S and $M_{\text {st }}$ gauges quantum effects (quantum fluctuations)

Ordered moment: example

$$
\begin{gathered}
\text { spin- } \frac{1}{2}, M_{\mathrm{st}}=1.0 \mu_{B} \text { (classical) } \\
M_{\mathrm{st}}=0.6 \mu_{B}(2 \mathrm{D}), M_{\mathrm{st}}=0.85 \mu_{B}(3 \mathrm{D})
\end{gathered}
$$

even lower value in dioptase \longrightarrow low connectivity

- Staggered magnetization is equivalent to ordered magnetic moment measured by neutron diffraction (up to the orbital moment and covalency effects)
- Classical limit: $M_{\text {st }}=S$
- Quantum limit: $M_{\text {st }}<S$ the difference between S and $M_{\text {st }}$ gauges quantum effects (quantum fluctuations)

Transition temperatures

- You may not find clear signatures of a Néel temperature in simulated $\chi(T)$
- You will find it very difficult to get an accurate T_{N} from $C_{p}(T)$

Transition temperatures

- Use Binder cumulant, $B(T)=\left\langle M^{2}\right\rangle /\langle M\rangle^{2} \quad$ ($M_{\text {st }}$ for antiferromagnets)
$-B(T)$ does not depend on the system size L at $T=T_{N}$,
- The crossing point of simulations performed for different system sizes yields T_{N}

Transition temperatures

- Use Binder cumulant, $B(T)=\left\langle M^{2}\right\rangle /\langle M\rangle^{2} \quad$ ($M_{\text {st }}$ for antiferromagnets)
- $B(T)$ does not depend on the system size L at $T=T_{N}$,
- The crossing point of simulations performed for different system sizes yields T_{N}

Mermin-Wagner theorem

David Mermin born 1935

Herbert Wagner born 1935

Continuous symmetries can not be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions $d \leq 2$

Mermin-Wagner theorem

David Mermin born 1935

Herbert Wagner born 1935

Human-readable version:
No long-range order in Heisenberg magnets at $T \neq 0$ in 1D and 2D It only makes sense to calculate T_{N} of a 3D Heisenberg magnet

General strategy

- Non-frustrated systems: use quantum Monte-Carlo

General strategy

- Non-frustrated systems: use quantum Monte-Carlo

Frustrated systems:

- Large spin \longrightarrow classical Monte-Carlo
- Small spin, OD \longrightarrow exact diagonalization
- Small spin, 1D \longrightarrow exact diagonalization
- Small spin, 2D \longrightarrow exact diagonalization + caution
- Small spin, 3D \longrightarrow you're doomed, try high-temperature series expansion (HTSE)

General strategy

- Non-frustrated systems: use quantum Monte-Carlo

Frustrated systems:

- Large spin \longrightarrow classical Monte-Carlo
- Small spin, OD \longrightarrow exact diagonalization
- Small spin, 1D \longrightarrow exact diagonalization
- Small spin, 2D \longrightarrow exact diagonalization + caution
- Small spin, 3D \longrightarrow you're doomed, try high-temperature series expansion (HTSE)

General strategy

- Non-frustrated systems: use quantum Monte-Carlo

Frustrated systems:

- Large spin \longrightarrow classical Monte-Carlo
- Small spin, OD \longrightarrow exact diagonalization
- Small spin, 1D \longrightarrow exact diagonalization
- Small spin, 2D \longrightarrow exact diagonalization + caution
- Small spin, 3D \longrightarrow you're doomed, try high-temperature series expansion (HTSE)

General strategy

- Non-frustrated systems: use quantum Monte-Carlo

Frustrated systems:

- Large spin \longrightarrow classical Monte-Carlo
- Small spin, OD \longrightarrow exact diagonalization
- Small spin, 1D \longrightarrow exact diagonalization
- Small spin, 2D \longrightarrow exact diagonalization + caution or HTSE
- Small spin, 3D \longrightarrow you're doomed, try high-temperature series expansion (HTSE)

High-temperature series expansion

- HTSE $=$ expansion of χ in powers of $1 / T$, reasonable at high- T only with $10-12^{\text {th }}$ order expansion extending down to $T \sim J$ becomes possible
- Coefficients are numerous and are to be determined numerically
- Use the HTE code [http://wasd.urz.uni-magdeburg.de/jschulen/HTE/]
- Experimental data up to high temperatures are essential

High-temperature series expansion

- HTSE $=$ expansion of χ in powers of $1 / T$, reasonable at high- T only with $10-12^{\text {th }}$ order expansion extending down to $T \sim J$ becomes possible
- Coefficients are numerous and are to be determined numerically
- Use the HTE code [http://wasd.urz.uni-magdeburg.de/jschulen/HTE/]
- Experimental data up to high temperatures are essential

Summary

What can we measure?

- Magnetization (+susceptibility)
- Specific heat
- Neutron diffraction

What can we calculate?

- Parameters of interest
- How to calculate?
- What to observe?

How to bring this together?

- Analytical solutions
- Numerical simulations
- Classical approximation

[^0]: How to bring this together?
 Analytical solutions
 Numerical simulations
 Classical approximation

[^1]: main page discussion view source history

[^2]: main page discussion view source history

