## Structure-property relationships in magnetism

#### Alexander Tsirlin

Experimental Physics VI, Center for Electronic Correlations and Magnetism University of Augsburg, Germany





University of Lille, France November 23, 2018







- Correlate experimental magnetic behavior with the microscopic (model) parameters
- Correlate the microscopic parameters with structural features
- Structure-properties relationship



- Correlate experimental magnetic behavior with the microscopic (model) parameters
- Correlate the microscopic parameters with structural features
- Structure-properties relationship

# Outline

#### What can we measure?

- Magnetization (+susceptibility)
- Specific heat
- Neutron diffraction



#### What can we calculate?

- Parameters of interest
- How to calculate?
- What to observe?

#### How to bring this together?

- Analytical solutions
- Numerical simulations
- Classical approximation





## Magnetic susceptibility



- Usually the easiest thing to measure
- Can be done on powder, polycrystalline pieces, single crystals, even thin films
- Used to determine nature of magnetism, characteristic temperatures, transitions...

## Magnetic susceptibility



- Usually the easiest thing to measure
- Can be done on powder, polycrystalline pieces, single crystals, even thin films
- Used to determine nature of magnetism, characteristic temperatures, transitions...

#### Problem: signal scales with the magnetic moment of the phase, not only with its volume fraction

## Magnetic susceptibility: caveats



• Ferromagnetic phases produce most of the signal, even if their amount is tiny

• Ferromagnetic contributions are suppressed by the field, but it does not always help

### Magnetic susceptibility: caveats



• Ferromagnetic phases produce most of the signal, even if their amount is tiny

Ferromagnetic contributions are suppressed by the field, but it does not always help

### Magnetic susceptibility: caveats



Ferromagnetic phases produce most of the signal, even if their amount is tiny
Ferromagnetic contributions are suppressed by the field, but it does not always help

### Magnetic susceptibility: local magnetic moment



• Curie-Weiss fit  $[\chi = C/(T - \theta)]$  at high temperatures returns:

- effective moment  $\mu_{\text{eff}}$  calculated from  $C = N_A g^2 \mu_{\text{eff}}^2 / 3k_B$
- Curie-Weiss temperature θ (energy scale of magnetic interactions)

#### Magnetic susceptibility: local magnetic moment



• Curie-Weiss fit  $[\chi = C/(T - \theta)]$  at high temperatures returns:

- effective moment  $\mu_{\text{eff}}$  calculated from  $C = N_A g^2 \mu_{\text{eff}}^2 / 3k_B$
- Curie-Weiss temperature θ (energy scale of magnetic interactions)

Problem: how to choose the *T* range of the fit? (rely on *T*<sub>min</sub> ≫ |θ|)
 Never fit the data, where you suspect (or observe) foreign contributions!

#### Magnetic susceptibility: local magnetic moment



• Curie-Weiss fit  $[\chi = C/(T - \theta)]$  at high temperatures returns:

- effective moment  $\mu_{\text{eff}}$  calculated from  $C = N_A g^2 \mu_{\text{eff}}^2 / 3k_B$
- Curie-Weiss temperature θ (energy scale of magnetic interactions)
- Problem: how to choose the T range of the fit? (rely on  $T_{\min} \gg |\theta|$ )
- Never fit the data, where you suspect (or observe) foreign contributions!



• Magnetic transitions manifest themselves by kinks or humps,



• Magnetic transitions manifest themselves by kinks or humps,



- Magnetic transitions manifest themselves by kinks or humps, but sometimes they are hidden
- Fisher's heat capacity,  $d(\chi T)/dT$ , helps to identify them



- Magnetic transitions manifest themselves by kinks or humps, but sometimes they are hidden
- Fisher's heat capacity,  $d(\chi T)/dT$ , helps to identify them

## Magnetization vs. susceptibility



• MPMS/PPMS measure magnetic moment (magnetization) M that can be recalculated into magnetic susceptibility  $\chi = dM/dH \sim M/H$ 

•  $\chi(T)$  and M(H) are inextricably intertwined

### Magnetization: saturation



• Saturation magnetization gauges the local moment:

- $\mu_{\text{eff}} = g\sqrt{S(S+1)}$  (effective moment, high-*T*)
- $M_s = gS\mu_B$  (local moment, low-T)

• Saturation field is a measure of (antiferromagnetic) exchange couplings

## Specific heat



- Not too difficult to measure, but easy to make a mistake (contributions of the platform and grease should be subtracted carefully)
- Solid piece of a material is required (powder is difficult)
- Signal scales with the volume fraction of the phase (minor impurities do not matter)

#### Specific heat: confirm phase transitions



## Specific heat: confirm phase transitions



When you see signatures of a transition in both χ and C<sub>p</sub>, you can be rather confident it is intrinsic

But: low-D antiferromagnets may show very weak of absent transition anomalies

#### Specific heat: confirm phase transitions



- When you see signatures of a transition in both χ and C<sub>ρ</sub>, you can be rather confident it is intrinsic
- But: low-D antiferromagnets may show very weak of absent transition anomalies

## Specific heat: low-T contributions



- Phonons:  $C_p \sim T^3$  (always there!)
- Heisenberg antiferromagnet:  $C_p \sim T^3$
- Heisenberg ferromagnet:  $C_p \sim T^{\frac{3}{2}}$
- Spin gap:  $C_{\rho} \sim \exp(-\Delta/T)$

- Low-temperature specific heat probes characteristic magnetic excitations
- The data below 1.8 K may be needed (PPMS with <sup>3</sup>He insert)
- Nevertheless, it helps to check  $C_p/T$  even above 1.8 K;

## Specific heat: low-T contributions



- Phonons:  $C_p \sim T^3$  (always there!)
- Heisenberg antiferromagnet:  $C_p \sim T^3$
- Heisenberg ferromagnet:  $C_p \sim T^{\frac{3}{2}}$
- Spin gap:  $C_p \sim \exp(-\Delta/T)$
- Other power laws: you might have found something interesting!

 $C_{
ho} \sim T \quad \longrightarrow \quad {
m gapless \ spin \ liquid}$ 

- Low-temperature specific heat probes characteristic magnetic excitations
- The data below 1.8 K may be needed (PPMS with <sup>3</sup>He insert)
- Nevertheless, it helps to check  $C_p/T$  even above 1.8 K; finite zero-temperature value means you have an unusual magnet, or simply a metal...

### Neutron diffraction



- Type of magnetic order (you get from the experiment)
- Size of the ordered moment (need an idea in advance)

## Ordered moment is important



## Ordered moment is important



•  $I_{
m mag} \sim \mu^2$  and can be very low, especially for spin- $rac{1}{2}$ 

• Always choose the right diffractometer (long wavelength, high flux)

## Neutron diffraction



- Type of magnetic order (you get from the experiment)
- Size of the ordered moment (need an idea in advance)

#### Successful beamtime proposal should include:

- Transition temperatures confirmed by thermodynamic measurements (susceptibility, specific heat)
- Estimate of the ordered moment (Curie-Weiss effective moment, saturation magnetization)

#### What can we measure?

- Magnetization (+susceptibility)
- Specific heat
- Neutron diffraction

#### What can we calculate?

- Parameters of interest
- How to calculate?
- What to observe?

#### How to bring this together?

- Analytical solutions
- Numerical simulations
- Classical approximation



## Spin Hamiltonian

$$\hat{H} = \sum_{\langle ij \rangle} J_{ij} \,\hat{\mathbf{S}}_i \,\hat{\mathbf{S}}_j + \sum_{\langle ij \rangle} \mathbf{D}_{ij} [\hat{\mathbf{S}}_i \times \hat{\mathbf{S}}_j] + \sum_{\langle ij \rangle} \hat{\mathbf{S}}_i \, \Gamma_{ij} \,\hat{\mathbf{S}}_j + \sum_i A_i \hat{S}_{iz}^2$$

- $J_{ij}$  isotropic (Heisenberg) exchange; normally, this is the leading term
- D<sub>ij</sub> Dzyaloshinsky-Moriya interactions (3 components)
- $\Gamma_{ij}$  symmetric part of the anisotropy (5 components)
- A<sub>i</sub> single-ion anisotropy
- All richness of the magnetic behavior is there, but the model is usually too "rich" to be tractable

## Spin Hamiltonian

$$\hat{H} = \sum_{\langle ij \rangle} J_{ij} \, \hat{\mathbf{S}}_i \, \hat{\mathbf{S}}_j + \sum_{\langle ij \rangle} \mathbf{D}_{ij} [\hat{\mathbf{S}}_i \times \hat{\mathbf{S}}_j] + \sum_{\langle ij \rangle} \hat{\mathbf{S}}_i \, \Gamma_{ij} \, \hat{\mathbf{S}}_j + \sum_i A_i \hat{S}_{iz}^2$$

- $J_{ij}$  isotropic (Heisenberg) exchange; normally, this is the leading term
- D<sub>ij</sub> Dzyaloshinsky-Moriya interactions (3 components)
- $\Gamma_{ij}$  symmetric part of the anisotropy (5 components)
- A<sub>i</sub> single-ion anisotropy
- All richness of the magnetic behavior is there, but the model is usually too "rich" to be tractable

Use only the first term unless you are interested in the magnetic moment direction, or observe anisotropic effects experimentally (very different behavior for different field directions, spin canting...)

## Heisenberg model





malachite, Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub> [Phys. Rev. B 88, 224406 (2013)]

CdCu<sub>2</sub>(BO<sub>3</sub>)<sub>2</sub> [Phys. Rev. B 85, 064404 (2012)]

$$\hat{H} = \sum_{\langle ij 
angle} J_{ij} \, \hat{\mathsf{S}}_i \, \hat{\mathsf{S}}_j$$

 $J_{ij}$  are exchange integrals = magnetic interaction energies denoted by bonds of a spin lattice

### Heisenberg model



$$\hat{H} = \sum_{\langle ij \rangle} J_{ij} \, \hat{\mathbf{S}}_i \, \hat{\mathbf{S}}_j$$

 $J_{ij}$  are exchange integrals = magnetic interaction energies denoted by bonds of a spin lattice

### Heisenberg model



$$\hat{H} = \sum_{\langle ij 
angle} J_{ij} \, \hat{\mathbf{S}}_i \, \hat{\mathbf{S}}_j$$

 $J_{ij}$  are exchange integrals = magnetic interaction energies denoted by bonds of a spin lattice

- The model is quantum, i.e., it contains spin operators, not simply spin vectors
- Quantum features are important when we consider the magnetic behavior
- However, we usually disregard them when calculating J<sub>ij</sub>'s from DFT
#### Two ways to extract the exchange parameters

- We usually do DFT
- It is also possible to use quantum chemistry (at least the MRCI level required), but then you are restricted to small clusters (long-range interactions are hard to get)

#### Two ways to extract the exchange parameters

#### • We usually do **DFT**

 It is also possible to use quantum chemistry (at least the MRCI level required), but then you are restricted to small clusters (long-range interactions are hard to get)

#### Mapping approach (total energies)

- Exchange parameters from total energies of fixed spin configurations
- Empirical corrections (DFT+U) or hybrid functionals required

Can be applied to a wide range of materials

"Shut up and calculate" type of approach

#### Model approach (electron hoppings)

- Take only free-electron part from DFT
- Add Hubbard *U* on the model level  $\hat{H} = \sum_{ij} t_{ij} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$
- Most useful for one-orbital cases
- More reliable and gives better insight





#### Two ways to extract the exchange parameters

#### • We usually do **DFT**

 It is also possible to use quantum chemistry (at least the MRCI level required), but then you are restricted to small clusters (long-range interactions are hard to get)

#### Mapping approach (total energies)

- Exchange parameters from total energies of fixed spin configurations
- Empirical corrections (DFT+U) or hybrid functionals required
- Can be applied to a wide range of materials
- "Shut up and calculate" type of approach

#### Model approach (electron hoppings)

- Take only free-electron part from DFT
- Add Hubbard *U* on the model level  $\hat{H} = \sum_{ij} t_{ij} \hat{c}^{\dagger}_{i\sigma} \hat{c}_{j\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$
- Most useful for one-orbital cases
- More reliable and gives better insight







$$E = \sum_{\langle ij \rangle} J_{ij} S_i S_j$$

In a nutshell,  $J \propto J_{\rm FM} - J_{
m AFM}$ 

#### Advanced version:

$$J = \frac{E_{\uparrow\uparrow} + E_{\downarrow\downarrow} - E_{\uparrow\downarrow} - E_{\downarrow\uparrow}}{4S^2}$$





- Very easy and straight-forward, but you need accurate total energies
- Hybrid functionals may be OK, but you'll have to calculate large supercells (50+ atoms), so you may not like hybrid functionals for this particular problem
- DFT+U is faster and comparable in accuracy, especially if you choose the right U
  - Remember to use J<sub>H</sub> ≠ 0 (Hund's exchange is there and may be important) [Phys. Rev. B 79, 035103 (2009)]
  - Don't underestimate the (acute) problem of the double-counting correction [LDAUTYPE in VASP], see also [Phys. Rev. B 84, 144429 (2011)]



#### Advanced version:

 $J = \frac{E_{\uparrow\uparrow} + E_{\downarrow\downarrow} - E_{\uparrow\downarrow} - E_{\downarrow\uparrow}}{4S^2}$ 



#### Choice of Hubbard U in DFT+U:

- Ask Olivier
- Ask recent literature
- Use several U values and choose the one that better fits (your) experiment



#### Advanced version:

 $J = \frac{E_{\uparrow\uparrow} + E_{\downarrow\downarrow} - E_{\uparrow\downarrow} - E_{\downarrow\uparrow}}{4S^2}$ 



#### Choice of Hubbard U in DFT+U:

- Ask Olivier
- Ask recent literature
- Use several U values and choose the one that better fits (your) experiment

--○ îî

∘ ↓↑



#### **Choice of Hubbard** U in DFT+U:

- Ask Olivier
- Ask recent literature
- Use several U values and choose the one that better fits (your) experiment



#### Choice of Hubbard U in DFT+U:

- Ask Olivier
- Ask recent literature
- Use several U values and choose the one that better fits (your) experiment

#### Everyone has his/her own U value. That's normal. Take it easy!

Philosophical remark: We are not doing true ab initio here. One may be more ab initio with quantum chemistry, but you will also find junctures, where you have to look up some experimental data before you can really "predict" anything

#### Multi-orbital Hubbard model

at  $t \ll U_{\rm eff}$ 

#### Multi-orbital Hubbard model

at 
$$t \ll U_{
m eff}$$

*i* and *j* label sites,  $\alpha$  and  $\beta$  label orbitals  $\Delta_{\alpha}$  are energy splittings,  $J_H$  is the Hund's coupling

$$\hat{H}_{ ext{spin}} = \sum_{i,j} J_{ij} \, \hat{\mathbf{S}}_i \, \hat{\mathbf{S}}_j \qquad \qquad J = J^{ ext{AFM}} + J^{ ext{FM}}$$
  
at  $t \ll U_{ ext{eff}}$ 

## Kugel-Khomskii model



Electron hops to the half-filled orbital

 $J^{\rm AFM} = 4t^2/U$ 

# Kugel-Khomskii model



Electron hops to the half-filled orbital

 $J^{AFM} = 4t^2/U$ 

Electron hops to an empty orbital

$$J^{\mathsf{FM}} = -rac{4t^2}{(U+\Delta)(U+\Delta-J_H)}$$

 $J_H$  is the on-site Hund's coupling  $\Delta$  is the crystal-field splitting

# Kugel-Khomskii model



Electron hops to the half-filled orbital

 $J^{AFM} = 4t^2/U$ 

Electron hops to an empty orbital

$$J^{\mathsf{FM}} = -rac{4t^2}{(U+\Delta)(U+\Delta-J_H)}$$

 $J_H$  is the on-site Hund's coupling  $\Delta$  is the crystal-field splitting

• Use the *uncorrelated* band structure (no need to mess around with DFT+U)

• The results still depend on U, but this dependence is explicit now, and, in some cases, just unimportant:  $J_2/J_1 \sim t_2/t_1$ 

Clear microscopic picture behind the magnetic interactions

# Example: $Sr_2VO(PO_4)_2$



•  $Sr_2VO(PO_4)_2$  is magnetic insulator,  $V^{4+} = d^1$ 

• We obtained metallic band structure because we have not used *U* That was intentional!

# Example: $Sr_2VO(PO_4)_2$ , $V^{4+}$ is magnetic



Identify the magnetic orbital(s) [those lying close to the Fermi level]

Check that crystal-field levels make sense

• Use Wannier functions to extract orbital energies ( $\varepsilon$ ) and electron hoppings (t)

Introduce t's into the Kugel-Khomskii or similar formulas

# Example: $Sr_2VO(PO_4)_2$ , $V^{4+}$ is magnetic



- Identify the magnetic orbital(s) [those lying close to the Fermi level]
- Check that crystal-field levels make sense
- Use Wannier functions to extract orbital energies ( $\varepsilon$ ) and electron hoppings (t)
- Introduce t's into the Kugel-Khomskii or similar formulas

# Example: $Sr_2VO(PO_4)_2$ , orbital picture



# Example: $Sr_2VO(PO_4)_2$ , orbital picture



| $J_1=-4.7~{ m K}$    | ferromagnetic     | no overlap of the magnetic orbital |
|----------------------|-------------------|------------------------------------|
| $J_2=9.7~\mathrm{K}$ | antiferromagnetic | small but non-negligible overlap   |

#### Magnetic orbital is perpendicular to the -V-V-V- chain

# $Sr_2VO(PO_4)_2$ : model vs. mapping approaches





|                                                                    | J1 (K)      | J <sub>2</sub> (K) |
|--------------------------------------------------------------------|-------------|--------------------|
| Model approach                                                     | -4.7        | 9.7                |
| DFT+ $U$ , $U_d = 4 \text{ eV}$<br>DFT+ $U$ , $U_d = 6 \text{ eV}$ | 2.5<br>-8.1 | 15.7<br>13.2       |
| Experiment                                                         | -8.3        | 5.9                |

# $Sr_2VO(PO_4)_2$ : model vs. mapping approaches



 Remark for experts: calculations were done in the full-potential code (FPLO) VASP will be much faster, but may be (even) less accurate

# $Sr_2VO(PO_4)_2$ : model vs. mapping approaches



 Remark for experts: calculations were done in the full-potential code (FPLO) VASP will be much faster, but may be (even) less accurate

- Model approach is most convenient when you have only one magnetic orbital viz. spin-<sup>1</sup>/<sub>2</sub>: Cu<sup>2+</sup>, V<sup>4+</sup>, Ti<sup>3+</sup>, etc.
- Mapping approach can be used for any magnetic ion without thinking how many orbitals it has
- But: orbitally degenerate scenarios are difficult in DFT+U (Ti<sup>3+</sup>, Cr<sup>2+</sup>, etc.), and you can strongly benefit from the Kugel-Khomskii description

- Model approach is most convenient when you have only one magnetic orbital viz. spin-<sup>1</sup>/<sub>2</sub>: Cu<sup>2+</sup>, V<sup>4+</sup>, Ti<sup>3+</sup>, etc.
- Mapping approach can be used for any magnetic ion without thinking how many orbitals it has
- But: orbitally degenerate scenarios are difficult in DFT+U (Ti<sup>3+</sup>, Cr<sup>2+</sup>, etc.), and you can strongly benefit from the Kugel-Khomskii description

- Model approach is most convenient when you have only one magnetic orbital viz. spin-<sup>1</sup>/<sub>2</sub>: Cu<sup>2+</sup>, V<sup>4+</sup>, Ti<sup>3+</sup>, etc.
- Mapping approach can be used for any magnetic ion without thinking how many orbitals it has
- But: orbitally degenerate scenarios are difficult in DFT+U (Ti<sup>3+</sup>, Cr<sup>2+</sup>, etc.), and you can strongly benefit from the Kugel-Khomskii description

**Before you use DFT**+U, especially for magnetic parameters:

- know what the occupation matrices are, and how to find them in the output
- know what the charge-transfer insulators are, and where they appear
- be cautious with 4d, don't try 5d unless you know what you are doing
- don't use DFT+U for metals!

- Model approach is most convenient when you have only one magnetic orbital viz. spin- $\frac{1}{2}$ : Cu<sup>2+</sup>, V<sup>4+</sup>, Ti<sup>3+</sup>, etc.
- Mapping approach can be used for any magnetic ion without thinking how many orbitals it has
- But: orbitally degenerate scenarios are difficult in DFT+U (Ti<sup>3+</sup>, Cr<sup>2+</sup>, etc.), and you can strongly benefit from the Kugel-Khomskii description

**Before you use DFT**+U, especially for magnetic parameters:

- know what the occupation matrices are, and how to find them in the output
- know what the charge-transfer insulators are, and where they appear
- be cautious with 4d, don't try 5d unless you know what you are doing
- don't use DFT+U for metals!
- Good news: in most of the problematic cases, DFT+U will simply not converge
- Bad news: some non properly converged or otherwise flawed DFT+U results have been published, see [J. Phys. Chem. A 114, 12345 (2010)] vs. [arXiv:1106.3665]

#### • There is a chance your DFT(+U+whatever) results will be wrong. What to do?

- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
- Rely on the general trends:
  - Short-range vs. long-range
  - Goodenough-Kanamori-Anderson rules
  - Long-range interactions (super-superexchange) always have a reason

- There is a chance your DFT(+U+whatever) results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
- Rely on the general trends:
  - Short-range vs. long-range
  - Goodenough-Kanamori-Anderson rules
  - Long-range interactions (super-superexchange) always have a reason

- There is a chance your DFT(+U+whatever) results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
- Rely on the general trends:
  - Short-range vs. long-range
  - Goodenough-Kanamori-Anderson rules
  - Long-range interactions (super-superexchange) always have a reason

- There is a chance your DFT(+U+whatever) results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
- Rely on the general trends:
  - Short-range vs. long-range
  - Goodenough-Kanamori-Anderson rules
  - Long-range interactions (super-superexchange) always have a reason

- There is a chance your DFT(+U+whatever) results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
- Rely on the general trends:
  - Short-range vs. long-range
  - Goodenough-Kanamori-Anderson rules
  - Long-range interactions (super-superexchange) always have a reason
- Size: exchange couplings decrease with the distance, but not exponentially, because ligands are strongly involved (superexchange)
  - $J \simeq 100$  K for the Cu–Cu distance of 6 Å is quite possible,
  - but 400 K would be very unlikely
- Sign:
  - Long-range couplings are normally antiferromagnetic
  - Short-range couplings can be either ferro- or antiferromagnetic

- There is a chance your DFT(+U+whatever) results will be wrong. What to do?
- Calculate J's in different supercells, make sure that the results are consistent
- Use model approach: look at the electron hoppings and make sure that there are relevant hoppings for all strong J's
- Rely on the general trends:
  - Short-range vs. long-range
  - Goodenough-Kanamori-Anderson rules
  - Long-range interactions (super-superexchange) always have a reason
- Size: exchange couplings decrease with the distance, but not exponentially, because ligands are strongly involved (superexchange)
  - $J \simeq 100$  K for the Cu–Cu distance of 6 Å is quite possible,
  - but 400 K would be very unlikely
- Sign:
  - Long-range couplings are normally antiferromagnetic
  - Short-range couplings can be either ferro- or antiferromagnetic

#### There are exceptions, but they confirm the rule

#### Goodenough-Kanamori-Anderson: 180° vs. 90°



$$Sr_2CuO_3$$
  
180° superexchange  
 $J \simeq 2800$  K



 $\begin{array}{c} \text{Li}_2\text{CuO}_2\\ 90^\circ \text{ superexchange}\\ J\simeq -230 \text{ K} \end{array}$ 

#### Exchange between half-filled *d*-orbitals:

- 180° = strongly antiferromagnetic
- $90^\circ$  = weakly ferromagnetic

#### Goodenough-Kanamori-Anderson: 180° vs. 90°



180° superexchange – magnetic *d*-orbitals overlap with the same *p*-orbital
 90° superexchange – magnetic *d*-orbitals overlap with different *p*-orbitals

### Goodenough-Kanamori-Anderson: example



Bi<sub>4</sub>Fe<sub>5</sub>O<sub>13</sub>F [Phys. Rev. B 96, 094420 (2017)]



|                   | $d_{ m Fe-Fe}$ (Å) | arphi (deg) | J (K) |
|-------------------|--------------------|-------------|-------|
| $J_{\perp}$       | 3.06               | 97.4        | 3     |
| $J_{44}$          | 2.91               | 94.2        | 9     |
| $J_{43}$          | 3.39               | 119.2       | 38    |
| J <sub>43</sub> ' | 3.53               | 130.9       | 57    |
| J <sub>33</sub>   | 3.64               | 180         | 116   |
## Super-super-...-superexchange

#### $Pb_2Cu(OH)_4Cl_2$

interatomic distance of 5.88 Å  $J \simeq 35$  K,  $T_N = 11$  K [Phys. Rev. B 87, 064404 (2013)]

linear Cu–O–O–Cu pathways are favorable for the superexchange



# Super-super-...-superexchange

#### $Pb_2Cu(OH)_4Cl_2$

interatomic distance of 5.88 Å  $J \simeq 35$  K,  $T_N = 11$  K [Phys. Rev. B 87, 064404 (2013)]

linear Cu–O–O–Cu pathways are favorable for the superexchange



#### BaV<sub>3</sub>O<sub>8</sub>

interatomic distance of 7.43 Å  $J \simeq 38$  K,  $T_N = 6$  K [Phys. Rev. B 89, 014405 (2014)] additional low-lying orbitals (here, *d*-orbitals of V<sup>+5</sup>)

#### What can we measure?

- Magnetization (+susceptibility)
- Specific heat
- Neutron diffraction

#### What can we calculate?

- Parameters of interest
- How to calculate?
- What to observe?

#### How to bring this together?

- Analytical solutions
- Numerical simulations
- Classical approximation



## Heisenberg model





malachite, Cu<sub>2</sub>(OH)<sub>2</sub>CO<sub>3</sub> [Phys. Rev. B 88, 224406 (2013)]

CdCu<sub>2</sub>(BO<sub>3</sub>)<sub>2</sub> [Phys. Rev. B 85, 064404 (2012)]

$$\hat{H} = \sum_{\langle ij 
angle} J_{ij} \, \hat{\mathsf{S}}_i \, \hat{\mathsf{S}}_j$$

 $J_{ij}$  are exchange integrals = magnetic interaction energies denoted by bonds of a spin lattice

▶ The model is quantum, i.e., it contains spin operators, not simply spin vectors

Quantum features are important when we consider the magnetic behavior

- In most cases, we can't solve the spin model analytically
- but we can make approximations

- In most cases, we can't solve the spin model analytically
- but we can make approximations

**Curie-Weiss temperature:** 

$$\theta = \frac{S(S+1)}{3} \sum_{i} z_i J_i$$

sum of all couplings at a given lattice site  $(z_i$  is the number of couplings of type i)



- In most cases, we can't solve the spin model analytically
- but we can make approximations

**Curie-Weiss temperature:** 

$$\theta = \frac{S(S+1)}{3} \sum_{i} z_i J_i$$

sum of all couplings at a given lattice site  $(z_i \text{ is the number of couplings of type } i)$ 

Saturation field:

$$\mu_0 H_s = \left(rac{g\mu_B}{k_B}
ight)^{-1} (E_{\mathrm{FM}} - E_{\mathrm{AFM}})$$

energy difference between the ferro- and antiferromagnetic states

example:  $\mu_0 H_s = (k_B/g\mu_B) \times 8J \times S$ for a square-lattice antiferromagnet



- In most cases, we can't solve the spin model analytically
- but we can make approximations

**Curie-Weiss temperature:** 

$$\theta = \frac{S(S+1)}{3} \sum_{i} z_i J_i$$

sum of all couplings at a given lattice site  $(z_i \text{ is the number of couplings of type } i)$ 

Saturation field:

$$\mu_0 H_s = \left(rac{g\mu_B}{k_B}
ight)^{-1} (E_{\mathrm{FM}} - E_{\mathrm{AFM}})$$

energy difference between the ferro- and antiferromagnetic states

example:  $\mu_0 H_s = (k_B/g\mu_B) \times 8J \times S$ for a square-lattice antiferromagnet



## Numerical simulations

- In most cases, we can't solve the spin model analytically
- but we can use numerical tools to simulate its magnetic response



ALPS = Algorithms and Libraries for Physics Simulations

- Diagonalization: exact and sparse (Lanczos)
- Monte Carlo: classical and quantum spin models
- Density-matrix renormalization group

# Numerical simulations

- In most cases, we can't solve the spin model analytically
- but we can use numerical tools to simulate its magnetic response



ALPS = Algorithms and Libraries for Physics Simulations

- Diagonalization: exact and sparse (Lanczos)
- Monte Carlo: classical and quantum spin models
- Density-matrix renormalization group
- Computationally not very efficient

## Numerical simulations: before you start

### Define your lattice: • bonds (interactions between the atoms) • boundary conditions – open or periodic avoid frustration by periodic boundary conditions

## Numerical simulations: before you start

#### Define your lattice:

- bonds (interactions between the atoms)
- boundary conditions open or periodic
- avoid frustration
   by periodic boundary conditions



# Numerical simulations: before you start

#### Define your lattice:

- bonds (interactions between the atoms)
- boundary conditions open or periodic
- avoid frustration
   by periodic boundary conditions

#### There will be mistakes. Verify your input:

- choose a special interaction regime and reduce your spin lattice to something simple (dimer, chain, etc.) J<sub>t1</sub> only → dimer
  - $J_d$  only  $\longrightarrow$  dimer + 2 free spins
- check Curie-Weiss, saturation field, and overall behavior
- the program may not tell you how different quantities are normalized, but there are enough tools to check that out





CdCu<sub>2</sub>(BO<sub>3</sub>)<sub>2</sub> [Phys. Rev. B 85, 064404 (2012)]

## Numerical simulations: finite-size effects



- Susceptibility: it's enough to use  $\sim$  6 unit cells along each dimension
- Ordered moment: you won't get the exact result, use finite-size scaling
- Ordering temperature: use universal scaling (Binder cumulant)

## Numerical simulations: what to expect?

• Simulation is done for a finite cluster always a small spin gap no real long-range ordering occurs

 Simulation is done for fixed values of J<sub>i</sub> you obtain a sequence of data points, not an analytical expression for the fitting

### Numerical simulations: what to expect?

- Simulation is done for a finite cluster always a small spin gap no real long-range ordering occurs
- Simulation is done for fixed values of J<sub>i</sub> you obtain a sequence of data points, not an analytical expression for the fitting

## Numerical simulations: what to expect?

 Simulation is done for a finite cluster always a small spin gap no real long-range ordering occurs
 Simulation is done for fixed values of J<sub>i</sub>

you obtain a sequence of data points, not an analytical expression for the fitting





# Analytical fitting expressions

Magnetic molecules – exact solution:

- dimers
- trimers / triangles
- tetramers

[Coord. Chem. Rev. 5, 313 (1970)] contains most of them



# Analytical fitting expressions

Magnetic molecules – exact solution:

- dimers
- trimers / triangles
- tetramers

[Coord. Chem. Rev. 5, 313 (1970)] contains most of them

#### Periodic systems (typically in 1D):

- interpolation of simulated data, D.C. Johnston and his poor co-authors
- uniform and alternating chains [Phys. Rev. B 61, 9558–9606 (2000)]
- spin ladders
   [arXiv:cond-mat/0001147], 63 pages

   may not be accurate



TABLE I. Fitted parameters for  $\chi^{+}(t)$  of the S = 1/2 antiferromagnetically coupled Heisenberg dimet  $(\alpha = 0)$  [Eqs. (50) with  $\Delta_{de}^{-} = 1$  and  $\chi^{+}(t)$  and C(t) [Eqs. (54)] for the uniform chain  $(\alpha = 1)$ .  $\chi^{+}(t)$  Fit 1 for the uniform chain  $(0.01 \in \tau < 5)$  [Eqs. (50) with  $\Delta_{de}^{+} = 0$ ] uses powers of 1/t only, whereas  $\chi^{+}(t)$  Fit 2  $(0 < \tau < 5)$  [Eqs. (53)] also incorporates logarithmic correction terms.

| arameter | $\chi^{*}(\alpha = 0)$ | $\chi^*(\alpha=1)$ Fit 1 | $\chi^*(\alpha=1)$ Fit 2 | $C(\alpha=1)$     |
|----------|------------------------|--------------------------|--------------------------|-------------------|
| 1        | 0.6342798982           | -0.053837836             | -0.240262331211          | -0.018890951426   |
| 2        | 0.1877696166           | 0.097401365              | 0.451187371598           | 0.024709724025    |
| 3        | 0.03360361730          | 0.014467437              | 0.0125889356883          | -0.0037086264240  |
| 4        | 0.003861106893         | 0.0013925193             | 0.0357903808997          | 0.0030159975962   |
| 5        | 0.0002733142974        | 0.00011393434            | 0.00801840643283         | -0.00037946929995 |
| 6        |                        |                          | 0.00182319434072         | 0.000042683893992 |
| ÷        | -                      |                          | 0.0000533189078137       |                   |
| 8        |                        |                          | 0.000184003448334        |                   |
| 81       |                        |                          | 1.423476309767           |                   |
| 82       | inter y                |                          | 0.341607132329           |                   |
|          |                        |                          | 5.696020642244           |                   |
|          | A Com                  | 0.44616216               | 0.259737668789           | -0.51889095143    |
|          |                        | 0.32048245               | 0.581056205993           | 0.59657583453     |
|          |                        | 0.13304199               | 0.261450372018           | -0.15117343936    |
| 6 - L    | A STATE N/ N/ N        | 0.037184126              | 0.142680453011           | 0.074445241148    |
| 4        | 100 M                  | 0.0028136088             | 0.0572246926066          | -0.0024804135233  |
|          |                        |                          |                          |                   |

# Analytical fitting expressions

Magnetic molecules – exact solution:

- dimers
- trimers / triangles
- tetramers

[Coord. Chem. Rev. 5, 313 (1970)] contains most of them

#### Periodic systems (typically in 1D):

- interpolation of simulated data, D.C. Johnston and his poor co-authors
- uniform and alternating chains [Phys. Rev. B 61, 9558–9606 (2000)]
- spin ladders
   [arXiv:cond-mat/0001147], 63 pages

   may not be accurate



TABLE I. Fitted parameters for  $\chi^{*}(t)$  of the S = 1/2 antiferromagnetically coupled Heisenberg dimet  $(\alpha = 0)$  [Eqs. (50) with  $\Delta_{B}^{*} = 1$ ] and  $\chi^{*}(t)$  and C(t) [Eqs. (54)] for the uniform chain  $(\alpha = 1)$ .  $\chi^{*}(t)$  Fit 1 for the uniform chain  $(0.01 \in \tau < 5)$  [Eqs. (50) with  $\Delta_{B}^{*} = 0$ ] uses powers of 1/t only, whereas  $\chi^{*}(t)$  Fit 2  $(0 < \tau < 5)$  [Eqs. (53)] also incorporate logarithmic correction terms.

| arameter       | $\chi^{*}(\alpha = 0)$ | $\chi^*(\alpha=1)$ Fit 1 | $\chi^*(\alpha=1)$ Fit 2 | $C(\alpha = 1)$   |
|----------------|------------------------|--------------------------|--------------------------|-------------------|
| V.             | 0.6342798982           | -0.053837836             | -0.240262331211          | -0.018890951426   |
| V2             | 0.1877696166           | 0.097401365              | 0.451187371598           | 0.024709724025    |
| V <sub>a</sub> | 0.03360361730          | 0.014467437              | 0.0125889356883          | -0.0037086264240  |
| V.             | 0.003861106893         | 0.0013925193             | 0.0357903808997          | 0.0030159975962   |
| Ve             | 0.0002733142974        | 0.00011393434            | 0.00801840643283         | -0.00037946929995 |
| V <sub>6</sub> |                        |                          | 0.00182319434072         | 0.000042683893992 |
| V.7            | -                      |                          | 0.0000533189078137       |                   |
| V <sub>8</sub> | 1                      |                          | 0.000184003448334        |                   |
| V.81           |                        |                          | 1.423476309767           |                   |
| V82            | STORY                  |                          | 0.341607132329           |                   |
|                |                        |                          | 5.696020642244           |                   |
|                | A Day                  | 0.44616216               | 0.259737668789           | -0.51889095143    |
| 0,             |                        | 0.32048245               | 0.581056205993           | 0.59657583453     |
| D.             |                        | 0.13304199               | 0.261450372018           | -0.15117343936    |
| D              |                        | 0.037184126              | 0.142680453011           | 0.074445241148    |
| De 1           |                        | 0.0028136088             | 0.0572246926066          | -0.0024804135233  |

Those expressions are valid in the whole T-range There are also expressions valid at  $T \ge J$  only (HTSE, will be discussed later)

## Exact diagonalization



# Diagonalization: example of the spectrum



Full (exact) diagonalization – whole energy spectrum (L ≤ 18 in ALPS)
Sparse (Lanczos) diagonalization – low-energy states only (L ≤ 32 in ALPS)

## Monte-Carlo: quantum vs. classical

- Quantum Monte-Carlo (loop, dirloop\_sse, worm) quantum spin Hamiltonian only lattices without frustration
- Classical Monte-Carlo (spinmc) classical spin Hamiltonian any lattice you want, but no quantum effects

## Monte-Carlo: quantum vs. classical

- Quantum Monte-Carlo (loop, dirloop\_sse, worm) quantum spin Hamiltonian only lattices without frustration
- Classical Monte-Carlo (spinmc) classical spin Hamiltonian any lattice you want, but no quantum effects





$$\hat{H} = \sum_{\langle ij \rangle} J_{ij} \, \mathbf{S}_i \, \mathbf{S}_j$$

 $\mathbf{S}_i$ ,  $\mathbf{S}_j$  are vectors

easy to handle, but typically mundane physics

## Monte-Carlo: quantum vs. classical

- Quantum Monte-Carlo (loop, dirloop\_sse, worm) quantum spin Hamiltonian only lattices without frustration
- Classical Monte-Carlo (spinmc) classical spin Hamiltonian any lattice you want, but no quantum effects



#### Classical spin is not quantized

- Classical approximation is good for  $S \to \infty$ , and not too bad for large spins
- ▶ Spins-<sup>1</sup>/<sub>2</sub> are quantum



### Quantum vs. classical: dimer case



Quantum vs. classical: dimer case





Quantum vs. classical: dimer case



• Classical ground-state energy can be improved by replacing  $S^2$  with  $S(S+1) = \frac{3}{4}$ ALPS does exactly this when you use convention=quantum in spinmc

### Classical vs. quantum





Classical states  $|\uparrow\uparrow\rangle, |\downarrow\downarrow\rangle$ , etc.

Quantum state  $\frac{1}{\sqrt{2}}\left(\left|\uparrow\downarrow\right\rangle-\left|\downarrow\uparrow\right\rangle\right)$ 

Image credits: WiseMan42, Kiedd 07 (Wikimedia Commons)

### Quantum effects in thermodynamics



### Quantum effects in thermodynamics



• Never use classical Monte-Carlo for spins- $\frac{1}{2}$ 

Spins- $\frac{5}{2}$  may be OK, although it's better to do quantum whenever you can

## Quantum effects in thermodynamics



#### Quantum and classical heat capacities are largely different for any value of S

#### Monte-Carlo: example



### Ordered moment





$$M = \sum_i m_i = 0$$

total magnetization

 $M_{
m st} = \sum_i m_i e^{i \, \mathbf{k} \, \mathbf{r}} = N imes m_i,$  $\mathbf{k} = (rac{\pi}{2}, rac{\pi}{2})$ 

staggered magnetization

Alternatively, staggered magnetization for sublattices A and B can be defined as  $M_{\rm st} = \frac{1}{N} \left( \sum_{i \in A} \mathbf{S}_i - \sum_{j \in B} \mathbf{S}_j \right)$ 

### Ordered moment: example



 $\begin{array}{l} {\rm spin-}\frac{1}{2},\ M_{\rm st}=1.0\ \mu_B\ ({\rm classical})\\ M_{\rm st}=0.6\ \mu_B\ ({\rm 2D}),\ M_{\rm st}=0.85\ \mu_B\ ({\rm 3D})\\ {\rm even\ lower\ value\ in\ dioptase\ }\longrightarrow\ low\ connectivity} \end{array}$ 

- Staggered magnetization is equivalent to ordered magnetic moment measured by neutron diffraction (up to the orbital moment and covalency effects)
- Classical limit:  $M_{\rm st} = S$
- Quantum limit: M<sub>st</sub> < S the difference between S and M<sub>st</sub> gauges quantum effects (quantum fluctuations)

### Ordered moment: example



- Staggered magnetization is equivalent to ordered magnetic moment measured by neutron diffraction (up to the orbital moment and covalency effects)
- Classical limit: M<sub>st</sub> = S
- Quantum limit: M<sub>st</sub> < S the difference between S and M<sub>st</sub> gauges quantum effects (quantum fluctuations)
### Transition temperatures



You may not find clear signatures of a Néel temperature in simulated χ(T)
You will find it *very* difficult to get an accurate T<sub>N</sub> from C<sub>p</sub>(T)

### Transition temperatures



• Use Binder cumulant,  $B(T) = \langle M^2 \rangle / \langle M \rangle^2$  ( $M_{\rm st}$  for antiferromagnets)

- B(T) does not depend on the system size L at  $T = T_N$ ,
- The crossing point of simulations performed for different system sizes yields T<sub>N</sub>

### Transition temperatures



• Use Binder cumulant,  $B(T) = \langle M^2 \rangle / \langle M \rangle^2$  ( $M_{\rm st}$  for antiferromagnets)

- B(T) does not depend on the system size L at  $T = T_N$ ,
- The crossing point of simulations performed for different system sizes yields T<sub>N</sub>

## Mermin-Wagner theorem





David Mermin born 1935 Herbert Wagner born 1935

Continuous symmetries can not be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions  $d \le 2$ 

## Mermin-Wagner theorem





David Mermin born 1935 Herbert Wagner born 1935

#### Human-readable version:

No long-range order in Heisenberg magnets at  $\,\mathcal{T}\neq 0$  in 1D and 2D

It only makes sense to calculate  $T_N$  of a 3D Heisenberg magnet

• Non-frustrated systems: use quantum Monte-Carlo

### • Non-frustrated systems: use quantum Monte-Carlo

- Large spin  $\longrightarrow$  classical Monte-Carlo
- Small spin, 0D —> exact diagonalization
- Small spin, 1D → exact diagonalization
- Small spin, 2D → exact diagonalization + caution
- Small spin, 3D you're doomed, try high-temperature series expansion (HTSE)



#### Non-frustrated systems: use quantum Monte-Carlo

- Large spin  $\longrightarrow$  classical Monte-Carlo
- Small spin, 0D  $\longrightarrow$  exact diagonalization
- Small spin, 1D  $\longrightarrow$  exact diagonalization
- Small spin, 2D → exact diagonalization + caution
- Small spin, 3D you're doomed, try high-temperature series expansion (HTSE)



#### Non-frustrated systems: use quantum Monte-Carlo

- Large spin  $\longrightarrow$  classical Monte-Carlo
- Small spin, 0D  $\longrightarrow$  exact diagonalization
- Small spin, 1D  $\longrightarrow$  exact diagonalization
- Small spin, 2D  $\longrightarrow$  exact diagonalization + caution
- Small spin, 3D → you're doomed, try high-temperature series expansion (HTSE)



#### Non-frustrated systems: use quantum Monte-Carlo

- Large spin  $\longrightarrow$  classical Monte-Carlo
- Small spin, 0D  $\longrightarrow$  exact diagonalization
- Small spin,  $1D \longrightarrow exact diagonalization$
- Small spin, 2D  $\longrightarrow$  exact diagonalization + caution or HTSE
- Small spin,  $3D \rightarrow$  you're doomed, try high-temperature series expansion (HTSE)

## High-temperature series expansion



 HTSE = expansion of χ in powers of 1/T, reasonable at high-T only with 10-12<sup>th</sup> order expansion extending down to T ~ J becomes possible

Coefficients are numerous and are to be determined numerically

• Use the HTE code [http://wasd.urz.uni-magdeburg.de/jschulen/HTE/]

Experimental data up to high temperatures are essential

## High-temperature series expansion



- HTSE = expansion of χ in powers of 1/T, reasonable at high-T only with 10-12<sup>th</sup> order expansion extending down to T ~ J becomes possible
- Coefficients are numerous and are to be determined numerically
- Use the HTE code [http://wasd.urz.uni-magdeburg.de/jschulen/HTE/]
- Experimental data up to high temperatures are essential

# Summary

### What can we measure?

- Magnetization (+susceptibility)
- Specific heat
- Neutron diffraction



### What can we calculate?

- Parameters of interest
- How to calculate?
- What to observe?

### How to bring this together?

- Analytical solutions
- Numerical simulations
- Classical approximation



