Physicist's view on structural phase transitions

Alexander Tsirlin

Experimental Physics VI, Center for Electronic Correlations and Magnetism University of Augsburg, Germany

University of Lille, France November 26, 2018

Outline

2 / 36

Prelude

on the importance of phase transitions and accurate structure determination

Classification and thermodynamics

first-order, second-order, and how to identify them?

Prelude Classification and thermodynamics Soft phonons Example Alexander Tsirlin / Augsburg

One old story

 Low-temperature ion-exchange reaction leads to a highly crystalline product that can't be obtained by high-temperature solid-state synthesis

• Other transition metals work too: (MnCl)LaNb₂O₇, (FeCl)LaNb₂O₇, etc.

T. Kodenkandath et al. JACS 121, 10743 (1999) T. Kodenkandath et al. Inorg. Chem. 40, 710 (2001)

Square-lattice antiferromagnet

 Theory: Long-standing interest in spin-¹/₂ (Cu-based) square-lattice antiferromagnets that evade magnetic order (precursor of high-T_c states?)

• Experiment: no long-range magnetic order in (CuCl)LaNb₂O₇ indeed [H. Kageyama *et al.* J. Phys. Soc. Jpn. 74, 1702 (2005)]

PRL 96, 027213 (2006)

PHYSICAL REVIEW LETTERS

week ending 20 JANUARY 2006

Nematic Order in Square Lattice Frustrated Ferromagnets

Nic Shannon,^{1,2} Tsutomu Momoi,³ and Philippe Sindzingre⁴ ¹Max-Planck-Institut für Chemische Physik fester Steffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany ²H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, BS8-1TL, United Kingdom ³Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ⁴Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 of CNRS, Université P. et M. Curie, case 121, 4 Place Jussieu, 73252 Paris Cedex, France (Received 15 September 2005; published 19 January 2006) PRL 96, 027213 (2006)

PHYSICAL REVIEW LETTERS

week ending 20 JANUARY 2006

Nematic Order in Square Lattice Frustrated Ferromagnets

Nic Shannon,^{1,2} Tsutomu Momoi,³ and Philippe Sindzingre⁴ ¹Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany ²H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, BS8-1TL, United Kingdom ³Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ⁴Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 of CNRS, Université P. et M. Curie, case 121. 4 Place Jussieu, 75252 Paris Cedex, France

(Received 15 September 2005; published 19 January 2006)

PHYSICAL REVIEW B 76, 214428 (2007)

Ground-state phase diagram and magnetic properties of a tetramerized spin- $1/2 J_1$ - J_2 model: BEC of bound magnons and absence of the transverse magnetization

Hiroaki T. Ueda and Keisuke Totsuka

Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto 606-8502, Japan (Received 1 October 2007; published 26 December 2007)

Square-lattice antiferromagnet?

• Theory: Long-standing interest in square-lattice antiferromagnets that evade magnetic order (precursor of high-*T_c* states?)

• Experiment: no long-range magnetic order in (CuCl)LaNb₂O₇ indeed

 $U_{\rm iso}(CI) = 0.133 \,\text{\AA}^2 ??!$ – something must be wrong here

DFT attempt

• Crystal structure optimization in DFT: arbitrary supercell, random guess of U...

 Cu²⁺ remains Jahn-Teller-active and tends to reduce the symmetry from tetragonal to orthorhombic

CuO₂Cl₂ plaquettes form, akin to the CuO₄ squares in Cu²⁺ oxides

AT et al. Phys. Rev. B 79, 214416 (2009)

 Unit cell should be expanded (2a × 2a × c) same superstructure reflections were observed before, but assigned to an (unknown) impurity

Two structural transitions upon heating

• Above RT, orthorhombic splitting becomes visible (accidentally, $a\simeq b$ at RT)

 Unit cell should be expanded (2a × 2a × c) same superstructure reflections were observed before, but assigned to an (unknown) impurity

Two structural transitions upon heating

• Above RT, orthorhombic splitting becomes visible (accidentally, $a \simeq b$ at RT)

- Unit cell should be expanded (2a × 2a × c) same superstructure reflections were observed before, but assigned to an (unknown) impurity
- Two structural transitions upon heating
- Above RT, orthorhombic splitting becomes visible (accidentally, $a \simeq b$ at RT)

- Unit cell should be expanded (2a × 2a × c) same superstructure reflections were observed before, but assigned to an (unknown) impurity
- Two structural transitions upon heating
- Above RT, orthorhombic splitting becomes visible (accidentally, $a \simeq b$ at RT)

Structural transitions

- Fully ordered and orthorhombic below 500 K confirmed by single-crystal XRD: [Hernandez et al. Dalton Trans. 40, 4605 (2011)]
- Disorder of Cu above 500 K (still orthorhombic)
- $\bullet~$ Disorder of Cu and Cl above 640 K $\longrightarrow~$ tetragonal symmetry

Structural transitions

- Fully ordered and orthorhombic below 500 K confirmed by single-crystal XRD: [Hernandez et al. Dalton Trans. 40, 4605 (2011)]
- Disorder of Cu above 500 K (still orthorhombic)
- $\bullet~$ Disorder of Cu and Cl above 640 K $\longrightarrow~$ tetragonal symmetry

Phase transitions are of order-disorder type

Experimental structure

- Displacements of Cu and Cl are not random, because Cu is linked to the oxygens of the [LaNb₂O₇] layers
- Suppression of the tilting distortion leads to a progressive disorder in the [CuCl] planes; one part of the structure facilitates the ordering in the other

Experimental structure

- Displacements of Cu and Cl are not random, because Cu is linked to the oxygens of the [LaNb₂O₇] layers
- Suppression of the tilting distortion leads to a progressive disorder in the [CuCl] planes; one part of the structure facilitates the ordering in the other

► The occurrence of phase transitions confirms the low-*T* crystal structure

Magnetic model

Magnetic model is a mess

- It's consistent with the experiments, but has nothing to do with the square-lattice geometry and high-T_c's
- Absence of magnetic order is completely normal in this case and would be well anticipated, should the correct crystal structure be available from the beginning

AT et al. Phys. Rev. B 82, 060409(R) (2010)

Take-home messages

- Pay attention to superstructure reflections
- Beware of high atomic displacement parameters
- Structural transitions help one to identify the correct type of ordering
- In physicists' hands, wrong crystal structures may lead to bad consequences

Take-home messages

- Pay attention to superstructure reflections
- Beware of high atomic displacement parameters
- Structural transitions help one to identify the correct type of ordering
- In physicists' hands, wrong crystal structures may lead to bad consequences

Take-home messages

- Pay attention to superstructure reflections
- Beware of high atomic displacement parameters
- Structural transitions help one to identify the correct type of ordering
- In physicists' hands, wrong crystal structures may lead to bad consequences

Endless story of volborthite

 $\label{eq:Volborthite, Cu_3V_2O_7(OH)_2 \cdot 2H_2O, is an interesting frustrated magnet} \\ with the \textit{time-dependent crystal structure}$

Anisotropic kagome lattice

Z. Hiroi *et al.* JPSJ 70, 3377 (2001)

Endless story of volborthite

 $\label{eq:Volborthite, Cu_3V_2O_7(OH)_2 \cdot 2H_2O, is an interesting frustrated magnet} \\ with the {\it time-dependent} crystal structure$

Endless story of volborthite

 $\label{eq:Volborthite, Cu_3V_2O_7(OH)_2 \cdot 2H_2O, is an interesting frustrated magnet} \\ with the {\it time-dependent} crystal structure$

Prelude

on the importance of phase transitions and accurate structure determination

Classification and thermodynamics

first-order, second-order, and how to identify them?

Soft modes

and beyond (order-disorder)

Practical example

francisite: ferro- or antiferroelectric?

Prelude Classification and thermodynamics

Soft phonons

ons Exam

mple Alexan

Alexander Tsirlin / Augsburg 14 / 36

Latent heat

Image credit: Andreas Weith, Fir0002 (Wikimedia Commons)

• In daily life, phase transitions are typically accompanied by:

- Phase coexistence
- Heat released or absorbed upon the transition (latent heat)

Latent heat

Image credit: Andreas Weith, Fir0002 (Wikimedia Commons)

• In daily life, phase transitions are typically accompanied by:

- Phase coexistence
- Heat released or absorbed upon the transition (latent heat)

Theory of phase transitions

Paul Ehrenfest 1880–1933

first theory of phase transitions

Superfluid transition of helium (λ -transition) first example of a second-order transition

W.H. Keesom and K. Clusius, KNAW Proceedings 35, 307 (1932)

- First order: latent heat, discontinuity in dG/dα
- Second order: no latent heat, discontinuity only in $d^2G/d\alpha^2$

$$\frac{\partial G}{\partial p} = V$$

Volume

 $1^{\rm st}$ order: cell volume changes abruptly $2^{\rm nd}$ order: volume changes continuously

$$\frac{\partial G}{\partial p} = V \qquad \qquad \frac{\partial G}{\partial T} =$$

$$\frac{1^{\text{st}} \text{ order: cell volume changes abruptly}}{2^{\text{nd}} \text{ order: volume changes continuously}}$$

$$\frac{\partial G}{\partial p} = V$$

Volume

 $1^{\rm st}$ order: cell volume changes abruptly $2^{\rm nd}$ order: volume changes continuously

$$\frac{\partial G}{\partial T} = S$$

Entropy

latent heat, $Q = T \Delta S$

 $1^{\rm st}$ order: latent heat released $2^{\rm nd}$ order: no latent heat

$$\frac{\partial G}{\partial p} = V$$

Volume

 $1^{\rm st}$ order: cell volume changes abruptly $2^{\rm nd}$ order: volume changes continuously

$$\frac{\partial G}{\partial T} = S$$

Entropy

latent heat, $Q = T\Delta S$ 1st order: latent heat released

 2^{nd} order: no latent heat

$$\frac{\partial^2 G}{\partial p \, \partial T} = \frac{\partial V}{\partial T} \sim$$

$$\frac{\partial G}{\partial p} = V$$

Volume

 $1^{\rm st}$ order: cell volume changes abruptly $2^{\rm nd}$ order: volume changes continuously

$$\frac{\partial G}{\partial T} = S$$

Entropy

latent heat, $Q = T\Delta S$ 1st order: latent heat released

 2^{nd} order: no latent heat

$$\frac{\partial^2 G}{\partial p \,\partial T} = \frac{\partial V}{\partial T} \sim c$$

Thermal expansion coefficient

 1^{st} order: ill-defined 2^{nd} order: anomaly (hump)

$$\frac{\partial G}{\partial p} = V$$

$$\frac{\partial G}{\partial T} = S$$

$$\frac{\partial G}{\partial T} = T\Delta S$$

$$\frac{\partial G}{\partial T} = T\Delta S$$

$$\frac{\partial G}{\partial T} = T\Delta S$$

$$\frac{\partial G}{\partial T} = \frac{\partial V}{\partial T} \sim \alpha$$

$$\frac{\partial^2 G}{\partial T} = \frac{\partial V}{\partial T} \sim \alpha$$

$$\frac{\partial^2 G}{\partial T^2} = \frac{\partial V}{\partial T} \sim \alpha$$

$$\frac{\partial^2 G}{\partial T^2} = \frac{\partial V}{\partial T} \sim \alpha$$

$$\frac{\partial^2 G}{\partial T^2} = \frac{\partial V}{\partial T} \sim \alpha$$

$$\frac{\partial^2 G}{\partial T^2} = \frac{\partial V}{\partial T} = \frac$$

$$\frac{\partial G}{\partial p} = V$$

$$\frac{\partial G}{\partial T} = S$$

$$\frac{\partial G}{\partial T$$

$$\frac{\partial^2 G}{\partial p \,\partial T} = \frac{\partial V}{\partial T} \sim c$$

Thermal expansion coefficient

 1^{st} order: ill-defined 2^{nd} order: anomaly (hump)

$$\frac{\partial^2 G}{\partial T^2} \sim C_p$$

Heat capacity

 $1^{\rm st}$ order: ill-defined $2^{\rm nd}$ order: λ -type anomaly

Coexistence of the high- \mathcal{T} and low- \mathcal{T} phases (or phase separation) marks a first-order transition

Volume change

• Latent heat manifests itself in heat-capacity measurements always do several measurements at each temperature and check it out

• For a *magnetic transition*, the presence of latent heat could imply:

- a structural component
- appearance of a second propagation vector
- transformation between magnetic structures with the same symmetry
- any other change in magnetic order inconsistent with the symmetry rules

• Latent heat manifests itself in heat-capacity measurements always do several measurements at each temperature and check it out

- For a *magnetic transition*, the presence of latent heat could imply:
 - a structural component
 - appearance of a second propagation vector
 - transformation between magnetic structures with the same symmetry
 - any other change in magnetic order inconsistent with the symmetry rules

Prelude

on the importance of phase transitions and accurate structure determination

Classification and thermodynamics

first-order, second-order, and how to identify them?

Practical example

francisite: ferro- or antiferroelectric?

Prelude Classification and thermodynamics Soft

For a second-order phase transition:

• Order parameter Ψ can be introduced, such that $\Psi = 0$ above T_c and $\Psi \neq 0$ below T_c

Order parameter can be:

- atomic displacement (structural transitions)
- ordered magnetic moment
- wavefunction of the superconducting state

• Free energy

can be expanded in even powers of Ψ ,

 $F = F_0 + a\Psi^2 + b\Psi^4 + \dots$

- Symmetry of the low-temperature phase follows an irreducible representations of the symmetry group of the high-temperature phase
- Symmetry analysis helps in identifying the transition
- ► For 2nd-order structural phase transitions, look at soft phonon modes

Soft mode

Soft mode

Ferroelectric distortion

Cubic structure paraelectric

Tetragonal structure ferroelectric

Condensation of a soft mode triggers a structural phase transition that can give rise to ferroelectricity

Adv. Phys. 29, 1 (1980)

Ferroelectrics vs. non-ferroelectrics

 $BaTiO_3 \\ \label{eq:barbon} \text{parallel displacements of the Ti}^{4+} \text{ ions}$

ferroelectric

 $SrTiO_3 \\ \mbox{counter-rotations of the TiO}_6 \mbox{ octahedra} \\$

paraelectric

Adv. Phys. 29, 1 (1980); J. Phys. Soc. Jpn. 26, 396 (1969)

Several competing modes are always present, and one of them eventually "wins"

- SrTiO₃: non-ferroelectric mode
- PbTiO₃: ferroelectric mode
- PbZrO₃: antiferroelectric mode
- BaTiO₃: ferroelectric mode
- BaZrO₃: neither mode (quantum paraelectric)

Adv. Phys. 29, 1 (1980); J. Phys. Soc. Jpn. 26, 396 (1969)

Several competing modes are always present, and one of them eventually "wins"

- SrTiO₃: non-ferroelectric mode
- PbTiO₃: ferroelectric mode
- PbZrO₃: antiferroelectric mode
- BaTiO₃: ferroelectric mode
- BaZrO₃: neither mode (quantum paraelectric)

Adv. Phys. 29, 1 (1980); J. Phys. Soc. Jpn. 26, 396 (1969)

Several competing modes are always present, and one of them eventually "wins"

- SrTiO₃: non-ferroelectric mode
- PbTiO₃: ferroelectric mode
- PbZrO₃: antiferroelectric mode
- BaTiO₃: ferroelectric mode
- BaZrO₃: neither mode (quantum paraelectric)

Adv. Phys. 29, 1 (1980); J. Phys. Soc. Jpn. 26, 396 (1969)

SrTiO₃: non-ferroelectric mode
 PbTiO₃: ferroelectric mode
 ...

Identification of potential soft modes helps in predicting a phase transition

Order-disorder component

- Local displacements survive well above the transition temperature
- Most transitions can be seen as intermediate between displacive (softening of a phonon mode) and order-disorder (ordering of pre-existing local displacements)

Order-disorder component

- Local displacements survive well above the transition temperature
- Most transitions can be seen as intermediate between displacive (softening of a phonon mode) and order-disorder (ordering of pre-existing local displacements)

Symmetry arguments are still the same, so the search for soft modes is very useful

Practical example francisite: ferro- or antiferroelectric?

Prelude

Classification and thermodynamics

Soft phonons

Example

Alexander Tsirlin / Augsburg

Francisite structure

$Francisite = Cu_3Bi(SeO_3)_2O_2CI:$

- $U_{\rm iso}(CI) = 0.042 \,{\rm \AA}^2$ at 293 K
- Cl is not part of the CuO₄ units
- Magnetic model OK [Phys. Rev. B 91, 024416 (2015)]
- Still, something is wrong here...

Syntheses, crystal structures and magnetic properties of francisite compounds $Cu_3Bi(SeO_3)_2O_2X$ (X = Cl, Br and I)

P. Millet,
*^a B. Bastide, ^a V. Pashchenko, b,c S. Gnatchenko,
 c V. Gapon, c Y. Ksari
 d and A. Stepanov d

^aCentre d'Elaboration de Matériaux et d'Etudes Structurales, CNRS, 29 rue Jeanne Marvig, BP 4347 Toulouse Cedex 4, France. E-mail: millet@cemes.fr

^bGrenoble High Magnetic Field Laboratory, MPI-FKF and CNRS, 38042 Grenoble Cedex 9, France

J. Mater. Chem. 11, 1152 (2001)

Phonon spectrum

Phonon spectrum

Phonon spectrum

- Γ-point instability: ferroelectric structure, P21mn
- Z-point instability: antiferroelectric structure, Pcmn
- The latter is slightly lower in energy (by 3 meV/f.u.)

Experiment: XRD

- New unit cell: $a_{sub} \times b_{sub} \times 2c_{sub}$
- New space group: Pcmn, inversion symmetry retained
- As predicted by DFT

D. Prishchenko, AT et al. Phys. Rev. B 95, 064102 (2017)

Low-T structure

- Cu and Cl displacements create local dipoles
- These dipoles have opposite directions in the adjacent layers, hence an antiferroelectric structure is formed

D. Prishchenko, AT et al. Phys. Rev. B 95, 064102 (2017)

Still ferroelectric?

- Claim of ferroelectricity based on the hysteresis in *P*(*E*)
- But the polarization is small (~ 10 µC/m²), and not confirmed by pyroelectric current measurements

Still ferroelectric?

- Claim of ferroelectricity based on the hysteresis in P(E)
- But the polarization is small $(\sim 10 \,\mu\text{C/m}^2)$, and not confirmed by pyroelectric current measurements

J F Scott VIEWPOINT Ferroelectrics go bananas

Francisite: antiferroelectric

• The polarization from pyroelectric current measurements is even smaller, $\sim 1 \,\mu\text{C/m}^2$, and clearly extrinsic (defects, grain boundaries...)

Francisite is eventually antiferroelectric, as expected

E. Constable et al. Phys. Rev. B 96, 014413 (2017)

Summary

Prelude

on the importance of phase transitions and accurate structure determination

Classification and thermodynamics

first-order, second-order, and how to identify them?

Prelude Classification and thermodynamics Soft phonons Example Alexander Tsirlin / Augsburg 36 / 36