Quantum spin liquids: where to find them, and how?

Alexander Tsirlin

Felix Bloch Institute of Solid-State Physics, Leipzig University

Where (2)?

Outline

Where to search?

How to detect?

Outline

Where to search?

How to detect?

Where to search exactly?

How to ensure it is really a spin liquid?

Where?... How?...

> Where?... How?...

Triangle? Not this one...

Image credits: Britton Perelman (fair use), Mpelletier1 and Joan Lanfranco (CC-BY-SA)

2)? How (2)?

Triangle? Not this one...

a lot of frustration too...

Image credits: Britton Perelman (fair use), Mpelletier1 and Joan Lanfranco (CC-BY-SA)

)? Where (2)

?)? How (2)?

"Toy model"

"Toy model"

Magnastix Educational Magnetic Sticks Building Blocks Toys - Brain Toys, Family Fun for all Ages

***** Write a review SmaritLLC

This item is no longer available

We're unable to show you buying options for this item.

Where (1)? How (1)? Where (2)? How (2)?

Artificial magnets

topography

magnetic contrast

Nanosized islands made of a ferromagnetic Ni-Fe alloy Large moments \longrightarrow strong dipole-dipole interactions

Phys. Today 69(7), 54 (2016)

Artificial magnets

magnetic contrast

Nanosized islands made of a ferromagnetic Ni-Fe alloy Large moments \longrightarrow strong dipole-dipole interactions

Phys. Today 69(7), 54 (2016)

Nature Rev. Phys. 2, 13 (2020)

/ (1)? Where (2

(2)? How (2)?

Nature Rev. Phys. 2, 13 (2020)

w (1)? Where (1

(2)? How (2)?

Nature Rev. Phys. 2, 13 (2020)

/ (1)? Where (2

(2)? How (2)?

Nature Rev. Phys. 2, 13 (2020)

Large magnetic moments \rightarrow no quantum effects

Further reading:

- I. Gilbert, C. Nisoli, P. Schiffer, Physics Today 69, 54 (2016)
- S. Skjœrvø et al. Nature Rev. Phys. 2, 13 (2020)

Where (1)? How (1)? Where (2)? How (2)?

Cold quantum gases

Plenty of interesting physics, but no spin liquids so far

Where (1)? Where (2)?

Solid-state materials: synthetic and natural

Crystals of magnetic compounds are hitherto the best experimental realization of frustrated magnets, including quantum-spin-liquid candidates

Solid-state materials: synthetic and natural

Crystals of magnetic compounds are hitherto the best experimental realization of frustrated magnets, including quantum-spin-liquid candidates

How to detect the spin liquid?

Stage 1 *absence of magnetic order*

Temperature

Heat capacity

Specific heat anomalies may be weak...

Where (1)? How (1)?

Where (2)? How

How (2)?

Neutron diffraction

Neutron diffraction

Magnetic Bragg peaks can be very weak, because $I \sim \mu_m^2$

Stage 1 *absence of magnetic order*

Temperature

Stage 2 *persistent spin dynamics*

? How (2)?

Muon spin relaxation

What happens: positron follows the direction of muon spin

- Measure: asymmetry of the positron emission
- Extract: local magnetization

Image credit: J.H. Brewer, slides at Int. Conference on Hyperfine interactions (2014)

Muon depolarization

Further reading: A. Hillier et al. Nature Rev. Methods Primer 2, 4 (2022)

Probe of local fields

Muons are able to say whether:

- your sample develops long-range order (discrete static fields)
- shows some other kind of static magnetism (spin glass)

Ambiguity of the muon data

Ambiguity of the muon data

Muons may see magnetism differently from other methods

Where (1)?

How (1)? Where (2)?

?)? How (2)?

Stage 1 *absence of magnetic order*

Temperature

Stage 2 *persistent spin dynamics*

Stage 3 evidence of unconventional excitations

Where (1)?

How (1)? Where (2)?

? How (2)?

Signatures of fractionalized excitations

Conventional (ordered) magnet S = 1 excitations, magnons

Unconventional (quantum) magnet

 $S = \frac{1}{2}$ excitations, *spinons*

Fractionalized excitations manifest themselves by broad spectral features

Image from M. Mourigal et al. Nature Phys. 9, 435 (2013)

)? Where (2)?

How (2)?

Unconventional excitations: specific heat

In insulators, linear term in the specific heat $(C_p \sim T)$ may be indicative of unconventional excitations

Unconventional excitations: thermal conductivity

Unconventional excitations: thermal conductivity

Unconventional excitations: thermal conductivity

Thermal conductivity data may be ambiguous...

Where (1)?

How (1)? Where (2)?

How (2)?

w (2)?

Unconventional excitations: spectroscopy

Excitation continuum manifests

unconventional nature of the system

Stage 1 *absence of magnetic order*

Temperature

Stage 2 *persistent spin dynamics*

Stage 3 evidence of unconventional excitations

Where (1)?

How (1)? Where (2)?

? How (2)?

Where to search for the spin liquid? (part 2)

Where (1)? How (1)? Where (2)?

? How (2)?

Diversity of geometries

? How (2)?

Cu-based kagome minerals:

- herbertsmithite
- tondiite
- kapellasite
- volborthite
- barlowite (Zn-doped)
- claringbullite (Zn-doped)

and perhaps more hidden under the ground...

Cu-based kagome minerals:

- herbertsmithite
- tondiite
- kapellasite
- volborthite
- barlowite (Zn-doped)
- claringbullite (Zn-doped)

and perhaps more hidden under the ground...

natural sample

synthetic sample

v (1)? Where (2)?

? How (2)

Spin dynamics

$$= \frac{1}{\sqrt{2}} \left(\left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \right)$$

"valence bond"

Most of the spectrum: excitations of nearest-neighbor singlets

T.-H. Han et al. Nature 492, 406 (2012)

Where (1)?

Where (2)?

How (2)?

Kagome materials

Cu-based kagome minerals:

- herbertsmithite
- tondiite
- kapellasite
- volborthite
- barlowite (Zn-doped)

...all look like spin liquids

Synthetic compounds:

- YCu₃(OH)₆Cl₃
- CaCu₃(OH)₆Cl₂
- KCu₃As₂O₇(OH)₃
 - ... are all magnetically ordered

Cu/Zn site mixing (*randomness*) is it relevant?

Image from T.-H. Han et al. Phys. Rev. B 94, 060409 (2016)

How (2)?

Kagome materials

Cu-based kagome minerals:

- herbertsmithite
- tondiite
- kapellasite
- volborthite
- barlowite (Zn-doped)

...all look like spin liquids

Synthetic compounds:

- YCu₃(OH)₆Cl₃
- CaCu₃(OH)₆Cl₂
- KCu₃As₂O₇(OH)₃
 - ... are all magnetically ordered

Cu/Zn site mixing (randomness) is it crucial?

Image from T.-H. Han et al. Phys. Rev. B 94, 060409 (2016)

How (2)?

How do we know it is liquid?

Lausitzer Seenland near Senftenberg

Where (1)?

How (1)? Where (2)?

2)? How (2)?

How do we know it is liquid?

Lausitzer Seenland near Senftenberg

lake or solar panels?

Where (1)?

w (1)? Where (2)?

How (2)?

How to detect the spin liquid? (part 2)

Where (1)? How (1)? Where (2)? How (2)?

v (2)?

Witness of entanglement: spin chain

Witness of entanglement: proximate spin liquid

Where (1)? How (1)?

Where (2)? How (2)?

1. Genuine vs. randomness "spin liquid":

distinguishable by quantum Fisher information?

2. Is quantum spin liquid **stable** against weak perturbations?

U.F.P. Seifert et al. Nature Comm. 15, 7110 (2024)

(1)? Where (2)?

General / introductory:

- T. Imai and Y. Lee, Physics Today 69, 30 (2016)
- A.A. Tsirlin and P. Gegenwart, *Physik in unserer Zeit* 50, 71 (2019) English version available on request
- J. Knolle and R. Moessner, Ann. Rev. Condens. Matter Phys. 10, 451 (2019)
- X.-G. Wen, Science 363, eaal3099 (2019)
- C. Broholm et al. Science 367, eaay0668 (2020)

Technical (and more theoretical):

- L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2017)
- Y. Zhou et al. Rev. Mod. Phys. 89, 025003 (2017)

Models and materials:

- S. Winter et al. J. Phys.: Condens. Matter 29, 493002 (2017)
- J.G. Rau and M.J.P. Gingras, Ann. Rev. Condens. Matter Phys. 10, 357 (2019)
- J.R. Chamorro, T.M. McQueen, T.T. Tran, Chem. Rev. 121, 2898 (2021)