Frustrated magnetism

Alexander Tsirlin

Experimental Physics VI, Center for Electronic Correlations and Magnetism University of Augsburg

What is special?

How to identify?

Frustrated magnetism

or everything you wanted to know about spin liquids but were afraid to ask

Alexander Tsirlin

Experimental Physics VI, Center for Electronic Correlations and Magnetism University of Augsburg

How to identify?

Outline

What is special?

Conventional and unconventional magnets Spin liquids Quantum effects and entanglement

How to identify?

Material classes From proof-by-contradiction to proof-by-evidence Continuous excitations and their detection

What to look for?

Quantum and classical spin liquids Magnetic monopoles Anyonic excitations

How to identify?

Conventional magnets

Develop magnetic order below the characteristic Néel temperature T_N
Ordered state can be represented by up- and down-spins (spin vectors)
Spin-wave excitations (precessing spins)

What is special? How to identify? What to look for? Alexander Tsirlin / Frustrated magnetism

Conventional magnets

• Develop magnetic order below the characteristic Néel temperature T_N

- Ordered state can be represented by up- and down-spins (spin vectors)
- Spin-wave excitations (precessing spins)

Lattice excitations in solids

• Periodic atomic displacements form lattice waves (phonons)

• Each phonon is described by a dispersion relation between energy and momentum

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Lattice excitations in solids

• Periodic atomic displacements form lattice waves (phonons)

• Each phonon is described by a dispersion relation between energy and momentum

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Conventional magnetic excitations

- Develop magnetic order below the characteristic Néel temperature T_N
- Ordered state can be represented by up- and down-spins (spin vectors)
- Spin-wave excitations (precessing spins) magnons

Conventional magnetic excitations

- Develop magnetic order below the characteristic Néel temperature T_N
- Ordered state can be represented by up- and down-spins (spin vectors)
- Spin-wave excitations (precessing spins) magnons

Frustrated magnets offer something less conventional

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

geometrical frustration competition on triangular loops

What is special? How to identify? What to look for? Alexander Tsirlin / Frustrated magnetism

geometrical frustration competition on triangular loops *exchange frustration* incompatible easy-axis directions

geometrical frustration competition on triangular loops *exchange frustration* incompatible easy-axis directions

Spin liquid

No magnetic long-range order Strong short-range correlations

geometrical frustration competition on triangular loops *exchange frustration* incompatible easy-axis directions

Spin liquid

No magnetic long-range order Strong short-range correlations

Ordinary liquids

freeze upon cooling

How to identify?

geometrical frustration competition on triangular loops *exchange frustration* incompatible easy-axis directions

Spin liquid

No magnetic long-range order Strong short-range correlations

Ordinary liquids

freeze upon cooling

Quantum spin liquids are different and do not freeze

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Quantum effects in magnets

Classical case

What is special? How to identify? What to look for? Alexander Tsirlin / Frustrated magnetism

Quantum effects in magnets

Classical case

Quantum case

Quantum effects in magnets

Classical case

Quantum case

In quantum magnets, spins become entangled

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

- What happens in Heisenberg antiferromagnets with the triangular geometry?
- P.W. Anderson (1973): they form a resonating-valence-bond (RVB) state,

a combination of all possible arrangements

of spin singlets on the triangular lattice

- What happens in Heisenberg antiferromagnets with the triangular geometry?
- P.W. Anderson (1973): they form a resonating-valence-bond (RVB) state, a combination of all possible arrangements of spin singlets on the triangular lattice

- What happens in Heisenberg antiferromagnets with the triangular geometry?
- P.W. Anderson (1973): they form a resonating-valence-bond (RVB) state, a combination of all possible arrangements of spin singlets on the triangular lattice

- What happens in Heisenberg antiferromagnets with the triangular geometry?
- P.W. Anderson (1973): they form a resonating-valence-bond (RVB) state, a combination of all possible arrangements of spin singlets on the triangular lattice

- What happens in Heisenberg antiferromagnets with the triangular geometry?
- P.W. Anderson (1973): they form a resonating-valence-bond (RVB) state, a combination of all possible arrangements of spin singlets on the triangular lattice

Two spins propagate independently, the S = 1 excitation breaks into two

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Signatures of fractionalized excitations

Conventional (ordered) magnet S = 1 excitations, magnons

Unconventional (quantum) magnet

 $S = \frac{1}{2}$ excitations, *spinons*

- Fractionalized excitations manifest themselves by broad spectral features and can be detected experimentally
- This fractionalization is a fingerprint of quantum entanglement

What is special? How to identify? What to look for? Alexander Tsirlin / Frustrated magnetism

What is special?

Conventional and unconventional magnets Spin liquids Quantum effects and entanglement

How to identify?

Material classes From proof-by-contradiction to proof-by-evidence Continuous excitations and their detection

What to look for?

Quantum and classical spin liquids Magnetic monopoles Anyonic excitations

Magnastix Educational Magnetic Sticks Building Blocks Toys - Brain Toys, Family Fun for all Ages

Write a review SmaritLLC

This item is no longer available

We're unable to show you buying options for this item.

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Large magnetic moments \rightarrow no quantum effects

Further reading:

- I. Gilbert, C. Nisoli, P. Schiffer, Physics Today 69, 54 (2016)
- C. Nisoli, R. Moessner, P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013)

What is special?

Realization: cold quantum gases

Plenty of interesting physics, but no spin liquids so far

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Realization: synthetic and natural materials

Crystals of magnetic compounds are hitherto the best experimental realization of frustrated magnets, including quantum-spin-liquid candidates

Realization: synthetic and natural materials

Crystals of magnetic compounds are hitherto the best experimental realization of frustrated magnets, including quantum-spin-liquid candidates

Three stages of experimental research

Stage 1

Absence of a magnetic transition indicates the spin liquid?

Temperature

Absence of a magnetic transition

Absence of a magnetic transition

Absence of a magnetic transition

In quantum magnets, thermodynamic signatures of magnetic ordering may be very weak and inconspicuous

Three stages of experimental research

Stage 1

Absence of a magnetic transition indicates the spin liquid?

It may indicate that you did not look close enough

Stage 2

Absence of local fields and presence of spin dynamics prove the spin-liquid formation?

Probe of local fields

Muons are able to say whether:

- your sample develops long-range order (discrete static fields)
- shows some other kind of static magnetism (spin glass)

What is special?

How to identify?

Ambiguity of the muon data

Ambiguity of the muon data

Muons may see magnetism differently from other methods

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Role of structural disorder

Spin dynamics is often accompanied by the structural disorder (and triggered by it?)

What is special?

How to identify?

Three stages of experimental work

Stage 1

Absence of a magnetic transition indicates the spin liquid?

It may indicate that you did not look close enough

Stage 2

Absence of local fields and presence of spin dynamics prove the spin-liquid formation?

They prove disordered magnetism of some sort

Stage 3

Unconventional excitations evidence the spin liquid

Three stages of experimental work

Stage 1

Absence of a magnetic transition indicates the spin liquid?

It may indicate that you did not look close enough

Stage 2

Absence of local fields and presence of spin dynamics prove the spin-liquid formation?

They prove disordered magnetism of some sort

Stage 3

Unconventional excitations evidence the spin liquid

Yes, but how do we know they are unconventional?

What is special?

How to identify?

Unconventional excitations: specific heat

Linear term in the specific heat of an insulating material $(C_{\rho} \sim T)$ = non-zero intercept for C_{ρ}/T vs. T^{2}

may be indicative of unconventional excitations

Unconventional excitations: thermal conductivity

Unconventional excitations: thermal conductivity

Unconventional excitations: thermal conductivity

Thermal conductivity data may be ambiguous...

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Unconventional excitations are broadly distributed in energy and momentum, and manifest themselves by a broad spectral feature (*continuum*)

How to identify?

How to understand David's star?

- K > 0: exotic fractionalized excitations (spin-liquid scenario)
- K < 0 (and $\Gamma \neq 0$): conventional excitations

How to understand David's star?

- K > 0: exotic fractionalized excitations (spin-liquid scenario)
- K < 0 (and $\Gamma \neq 0$): conventional excitations (magnon breakdown)

How to understand David's star?

- K > 0: exotic fractionalized excitations (spin-liquid scenario) ۲
- K < 0 (and $\Gamma \neq 0$): conventional excitations (magnon breakdown)

Even if you see a broad spectral feature, its meaning depends on the interpretation!

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Three stages of experimental work

Stage 1

Absence of a magnetic transition indicates the spin liquid?

It may indicate that you did not look close enough

Stage 2

Absence of local fields and presence of spin dynamics prove the spin-liquid formation?

They prove disordered magnetism of some sort

Stage 3

Unconventional excitations evidence the spin liquid

- Yes, but how do we know they are unconventional?
- No unique experimental signature of a spin liquid exists, we have to cross-check the scenario by a variety of methods, and refer to "spin-liquid candidates" rather than "materials"

How to identify?

What to look for?

idence the spin liquid hev are unconventional?

What to look for?

What is special?

Conventional and unconventional magnets Spin liquids Quantum effects and entanglement

How to identify?

Material classes From proof-by-contradiction to proof-by-evidence Continuous excitations and their detection

What to look for?

Quantum and classical spin liquids Magnetic monopoles Anyonic excitations

Quantum vs. classical

Classical spin liquid

Multiple classical states having the same energy

Quantum spin liquid

Ground state is a superposition of classical states

What is special?

How to identify?

Quantum vs. classical

Classical soup

Classical spin liquid

Multiple classical states having the same energy

Quantum soup

Quantum spin liquid

Ground state is a superposition of classical states

How to identify?

Quantum vs. classical

Classical spin liquid

Multiple classical states having the same energy Only thermal fluctuations, spins freeze at low T

Quantum spin liquid

Ground state is a superposition of classical states

Quantum fluctuations keep spins dynamic down to 0 K

Classical spin liquids can be interesting too

What is special?

How to identify?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Magnetic monopoles

Magnetic monopoles

- Spin flip (excitation) generates two magnetic "charges" that can propagate independently
- Access to the physics of magnetic monopoles
- What happens in the quantum case?

What is special?

Anyonic excitations

• Different flavor of fractionalization: spin breaks down into Majorana fermions

• Excitations are represented by anyons – quasiparticles with an unusual statistics

What is special?

Anyonic excitations

• Different flavor of fractionalization: spin breaks down into Majorana fermions

- Excitations are represented by anyons quasiparticles with an unusual statistics
- How to get there experimentally?

What is special?

What to look for?

Alexander Tsirlin / Frustrated magnetism

Structural disorder squeezes unpaired spins out of the valence-bond state
A new way of getting spin-¹/₂ degrees of freedom

What is special? How to identify? What to look for? Alexander Tsirlin / Frustrated magnetism

• Structural disorder squeezes unpaired spins out of the valence-bond state

- A new way of getting spin- $\frac{1}{2}$ degrees of freedom
- How do these unpaired spins interact, and are their excitations exotic?

Further reading

General / introductory:

- L. Balents, Nature 464, 199 (2010)
- T. Imai and Y. Lee, Physics Today 69, 30 (2016)
- A.A. Tsirlin and P. Gegenwart, *Physik in unserer Zeit* **50**, 71 (2019) English version available on request
- J. Knolle and R. Moessner, Ann. Rev. Condens. Matter Phys. 10, 451 (2019)

Technical (and more theoretical):

- L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2017)
- Y. Zhou et al. Rev. Mod. Phys. 89, 025003 (2017)

Models and materials:

- S. Winter et al. J. Phys.: Condens. Matter 29, 493002 (2017)
- M. Hermanns et al. Ann. Rev. Condens. Matter Phys. 9, 17 (2018)
- J.G. Rau and M.J.P. Gingras, Ann. Rev. Condens. Matter Phys. 10, 357 (2019)

What is special?