Bird's eye view of magnetic order

exchange couplings, magnetic model

synthetic magnets

Werner Heisenberg

Ferromagnetic vs. antiferromagnetic

Ferromagnet

 $M=M_{s}$ saturated magnetization

Antiferromagnet

M=0 zero net magnetization

Magnetic sublattices

Antiferromagnetic vs. Ferrimagnetic

Antiferromagnet

M=0 fullly compensated

Ferrimagnet

M
eq 0 partially compensated

commensurate collinear

commensurate collinear

incommensurate collinear

commensurate collinear

incommensurate collinear

incommensurate non-collinear

Spin textures: skyrmions

Helical magnetic structures may turn into finite objects, skyrmions, that can be used for information storage

Dipole-dipole interaction

Chem. Eur. J. 29, e202203421 (2022)

Dipole-dipole interaction

Material / Technology

synthetic magnets

Artificial magnets

Nanosized islands made of a ferromagnetic Ni-Fe alloy

Large moments — strong dipole-dipole interactions

Phys. Today 69(7), 54 (2016)

Artificial magnets

Nanosized islands made of a ferromagnetic Ni-Fe alloy Large moments —> strong dipole-dipole interactions

Phys. Today 69(7), 54 (2016)

Magnetic monopole?

Magnetic monopole?

Nature Rev. Phys. 2, 13 (2020)

Magnetic monopole?

Nature Rev. Phys. 2, 13 (2020)

Exchange interaction

Same mechanism as the formation of a chemical bond In spin space, $E \sim S_1 S_2 \implies \mathcal{H} = J \hat{\mathbf{S}}_1 \hat{\mathbf{S}}_2$

Direct exchange vs. Superexchange

Super-super-...-superexchange

Pb₂Cu(OH)₄Cl₂

interatomic distance of 5.88 Å $J \simeq 35 \, {\rm K}, \ T_N = 11 \, {\rm K}$ [Phys. Rev. B 87, 064404 (2013)]

Super-super-...-superexchange

Pb₂Cu(OH)₄Cl₂

interatomic distance of 5.88 Å $J \simeq 35 \, \mathrm{K}, \ T_N = 11 \, \mathrm{K}$ [Phys. Rev. B 87, 064404 (2013)]

BaV₃O₈

interatomic distance of 7.43 Å $J \simeq 38 \, \mathrm{K}, \, T_N = 6 \, \mathrm{K}$ [Phys. Rev. B 89, 014405 (2014)]

Person
Werner Heisenberg

Heisenberg

Werner Heisenberg 1901–1976

1932-33 Nobel prize in physics
"for the creation of quantum mechanics, the application of which has, *inter alia*, led to the discovery of the allotropic forms of hydrogen"

Spin isomers of hydrogen

- 1927: predicted by Heisenberg
- 1929: observed experimentally (Harteck, Bonhoeffer)

Image credit: Schmidan (CC-BY-SA)

Heisenberg uncertain

Werner Heisenberg 1901–1976

1932-33 Nobel prize in physics
"for the creation of quantum mechanics, the application of which has, *inter alia*, led to the discovery of the allotropic forms of hydrogen"

Heisenberg in retrospective

Werner Heisenberg 1901–1976

- 1920-1923: physics studies and PhD at LMU
- 1924: Habilitation in Göttingen
- 1927–1942: professor in Leipzig
- 1932: Nobel prize in physics
- 1942–1945: head of Uranverein (German atomic project)

Heisenberg in retrospective

Werner Heisenberg 1901–1976

- 1920-1923: physics studies and PhD at LMU
- 🕨 1924: Habilitation in Göttingen
- 1927–1942 professor in Leipzig
- 1932: Nobel prize in physics
- 1942–1945: head of Uranverein (German atomic project)

Barbara Blum-Heisenberg at Uni Leipzig, 7.11.2024