A closer look: mean-field theory

# Curie-Weiss temperature, spin-flop transition



generation of magnetic fields



helical magnets



by Alexander Tsirlin, Leipzig University

Lecture 6: November 25, 2024

Fundamentals of Magnetism, WS 24/25 A closer look: mean-field theory

#### Sublattices and magnetic interactions



 $\lambda_{11}$ ,  $\lambda_{22}$  - interactions within the sublattice  $\lambda_{12} = \lambda_{21}$  - interactions between the sublattices

#### Saturation field



#### Saturation field



5.

# Experiment

#### generation of magnetic fields

Fundamentals of Magnetism, WS 24/25 A closer look: mean-field theory

#### Standard electromagnet (resistive magnet)



Fields up to 1T, main usage: electron spin resonance spectroscopy

Fundamentals of Magnetism, WS 24/25 A closer look: mean-field theory

#### Bitter magnet



IEEE Trans. Plasma Sci. 44, 540 (2016); Rev. Sci. Instrum. 84, 104706 (2013)

### Bitter magnet: pushing the limits



Current record: 35 T (power consumption: 30 MW) operational costs: \$1500 per hour

Image credits: MagLab (fair use) and PeterFrankfurt (CC-zero)

### Bitter magnet: pushing the limits



Current record: 35 T (power consumption: 30 MW) operational costs: \$1500 per hour

Image credits: MagLab (fair use) and PeterFrankfurt (CC-zero)

Fundamentals of Magnetism, WS 24/25 A closer look: mean-field theory



## Make It Better ... With a Bitter!

The heart of a resistive magnet, the Bitter disk is too beautiful and versatile to be confined to the laboratory.



Image credits: MagLab (fair use)

#### Bitter plates re-used



## Make It Better ... With a Bitter!

The heart of a resistive magnet, the Bitter disk is too beautiful and versatile to be confined to the laboratory.



Image credits: MagLab (fair use)

#### Bitter plates re-used



## Make It Better ... With a Bitter!

The heart of a resistive magnet, the Bitter disk is too beautiful and versatile to be confined to the laboratory.



Image credits: MagLab (fair use)

#### Superconducting magnets





#### Zero resistivity, no need for cooling

Commercial magnets: up to 22 T, prototypes: up to 32 T (limited by the critical fields of superconducting materials)

#### Superconducting magnets





#### Zero resistivity, no need for cooling

Commercial magnets: up to 22 T, prototypes: up to 32 T (limited by the critical fields of superconducting materials)

Hybrid magnet: 45 T = 33.5 T resistive + 11.5 T superconducting

#### Pulsed magnets: brief shining moments

Rep. Prog. Phys. 62, 859 (1999)



Fields up to  $90 - 100 \,\mathrm{T}$  routinely available, longer pulses possible too

#### Pulsed magnets: brief shining moments

Rep. Prog. Phys. 62, 859 (1999) and MagLab



Fields up to  $90-100\,\text{T}$  routinely available, longer pulses possible too

#### European high-field network (EMFL)



### Single-coil magnets





Fields up to 300 T available

Magnetization / magnetostriction measurements (e.g., ISSP Tokyo)



Fields above 1000 T recorded No real use for condensed-matter experiments (yet?)

Rep. Prog. Phys. 62, 859 (1999)



.

# Material / Technology

helical magnets

Fundamentals of Magnetism, WS 24/25 A closer look: mean-field theory

#### Types of incommensurate magnets



#### Types of incommensurate magnets





#### Types of incommensurate magnets



#### Origin of incommensurability



#### Origin of incommensurability



Antiferromagnetic  $J_2$  frustrates the system, hence spiral order at large enough  $|J_2|$ 

Spin helices at work



Sci. Reports 5, 16153 (2016); Nature Comm. 15, 1999 (2024); The London Center for Nanotechnology

#### Anisotropy and spin-flop



New J. Phys. 11, 113034 (2009)

#### Anisotropy and spin-flop



J. Solid State Chem. 236, 39 (2016)