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You can use both the SI or CGS units, but you may find CGS easier whenever magnetic moments and
magnetic susceptibilities are involved.

3.1. J = 0 magnetism (8P)

In its low-spin state, the octahedrally coordinated Ru4+ (3d4) features S = 1 and
L = 1, giving rise to three multiplets with J = 0, 1, 2, as shown in the figure (note
that J = 0 has the lowest energy, at odds with the third Hund’s rule; this is because
we calculate L within the t2g shell where the third Hund’s rule is “reversed”). The

splitting between these multiplets is due to the spin-orbit coupling, λ L̂ Ŝ.

(a) Calculate the expectation values of L̂ Ŝ and determine the energies of the J = 1
and J = 2 multiplets.

(b) Use the Clebsch-Gordan coefficients to decompose the states of the J-multiplets
into the |lz, sz⟩ states.

J = 0

J = 1

J = 2

(c) Calculate the matrix elements ⟨0|gLL̂z + gSŜz|n⟩ where |0⟩ is the ground state (J = 0) and |n⟩ are the
excited states of the J = 1 and J = 2 multiplets. Note that you have to use gS = 2 but gL = −1, the latter
is again a consequence of considering only the t2g shell and not the spherically symmetric atom.

(d) Using λ = 0.1 eV, determine the Van Vleck susceptibility of Ru4+. Compare the result to the experimental
data for K2RuCl6 from Fig. 1 of Phys. Rev. Lett. 127, 227201 (2021).

(e) Try to get the temperature dependence by including the magnetism of the excited states.

3.2. Pauli paramagnetism, also at elevated temperatures (7P)

Use the free-electron model to analyze Pauli paramagnetism of sodium (a = 4.225 Å, bcc lattice = 2 atoms
per unit cell, Z = 1 valence electron per atom).

(a) Calculate the density of states at the Fermi level, N(εF ), and the corresponding Pauli susceptibility at
0K.

(b) Obtain the lowest-order correction to this result at finite temperatures. To this end, use the expression
from the lecture,

M = µ2
B B ×

∫
N ′(ε)f(ε) dε

and the Sommerfeld expansion,

∞∫
0
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π2

6
(kBT )

2H ′(εF )

where H(ε) is an arbitrary function and f(ε) is the Fermi-Dirac distribution.

(c) Determine the correction to the magnetic susceptibility of Na at 300K.

The electron concentration, Fermi energy, and density of states can be determined using the lattice parameter
of sodium. Check any solid-state physics textbook if you are not sure (or forgot) how to do this.
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3.3. Stoner enhancement (5P)

Consider the Stoner’s model from lecture 4 and augment its energy with an additional term due to magnetic
field,

∆E =
1

2
N(εF )(δE)2(1− UN(εF ))−MB

where M = µB(n↑ − n↓) = µBN(εF ) δE.

(a) Minimize ∆E with respect to M and show that the magnetic susceptibility is given by

χ =
χP

1− UN(εF )

where χP is the Pauli susceptibility. The correction to χP is the Stoner enhancement that takes place when
electron-electron interactions are present, yet not strong enough to induce the ferromagnetic instability in a
metal.

(b) Use the experimental magnetic susceptibility of palladium, χ = 5.4× 10−4 cm3/mol, to determine U , the
energy of the electron-electron repulsion. Express the result in eV. Use N(εF ) = 2 eV−1/atom, the density
of states at the Fermi level.
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