Vortices, and where is the critical field?

<u>گ</u>لا

type-II superconductors, vortices, lower and upper critical fields

Alexey Abrikosov

Nb-based intermetallic superconductors

Lecture 6: May 16, 2024

by Alexander Tsirlin, Leipzig University

Type-I superconductors

Formula 🕈	<i>T</i> _C (K) ♦	<i>H</i> _C (T) ◆	Туре 🕈	BCS +	References +			
Elements								
AI	1.20	0.01	1	yes	[1][2][3]			
Cd	0.52	0.0028	1	yes	[2][3]			
Diamond:B	11.4	4	II.	yes	[4][5][6]	type-II		
Ga	1.083	0.0058	1	yes	[7][3][2]			
Hf	0.165		1	yes	[2]			
α-Hg	4.15	0.04	1	yes	[2][3]			
β-Hg	3.95	0.04	Ĩ.	yes	[2][3]			
In	3.4	0.03	1	yes	[2][3]			
Ir	0.14	0.0016[7]	1	yes	[2]			
α-La	4.9		1	yes	[2]			
β-La	6.3		1	yes	[2]			
Мо	0.92	0.0096	I.	yes	[2][7]			
Nb	9.26	0.82	H.	yes	[2][3]	type-II		
Os	0.65	0.007	L	yes	[2]	tune I seconding to recent data.		
Pa	1.4		1	yes	[8]	Dhyo Doy P		
Pb	7.19	0.08	I	yes	[2][3]	106 180505 (2022)		
Re	2.4	0.03	1	yes	[2][3][9]	100, 1100000 (2022)		

Source: Wikipedia

Type-II superconductors

Substance +	Class \$	7 _C (K) ¢	H _C (T) +	Type 🕈	BCS ¢	References 4
C ₆₀ K ₃	Compound	19.8	0.013	Ш	yes	[15][19]
C ₆₀ Rb _X	Compound	28		П	yes	[20]
FeB ₄	Compound	2.9		П		[21]
InN	Compound	3		Ш	yes	[22]
In ₂ O ₃	Compound	3.3	~3	II	yes	[23]
LaB ₆	Compound	0.45			yes	[24]
MgB ₂	Compound	39	74	П	yes	[25]
Nb ₃ Al	Compound	18		II	yes	[2]
NbC _{1-x} N _x	Compound	17.8	12	П	yes	[26][27]
Nb ₃ Ge	Compound	23.2	37	Ш	yes	[28]
NbO	Compound	1.38		П	yes	[29]
NbN	Compound	16		П	yes	[2]
Nb ₃ Sn	Compound	18.3	30	11	yes	[30]
NbTi	Compound	10	15	11	yes	[2]
SiC:B	Compound	1.4	0.008	I	yes	[31]
SiC:Al	Compound	1.5	0.04	Ш	yes	[31]
TiN	Compound	5.6	5	1	yes	[32][33][34]
V ₃ Si	Compound	17				[35]
YB ₆	Compound	8.4		11	yes	[36][37][38]

Source: Wikipedia

Landau's intuition

К ТЕОРИИ СВЕРХПРОВОДИМОСТИ Совместно с В. Л. ГИНЗБУРГОМ ЖЭТФ, 20, 1064, 1950

Since from the experimental data it follows that $\varkappa \leq 1$, and also for a reason indicated below the solution of equations (18) possible for another limiting case when $\varkappa \to \infty$ does not offer any intrinsic interest, we shall not discuss it.

Landau's intuition

К ТЕОРИИ СВЕРХПРОВОДИМОСТИ Совместно с В. Л. ГИНЗБУРГОМ ЖЭТФ, 20, 1064, 1950

Since from the experimental data it follows that $\varkappa \ll 1$, and also for a reason indicated below the solution of equations (18) possible for another limiting case when $\varkappa \to \infty$ does not offer any intrinsic interest, we shall not discuss it.

Let us now note that for $\varkappa \geq 1/\sqrt{2}$ a peculiar instability of the normal phase of the metal occurs. Indeed, suppose the whole metal is in equilibrium, and in the normal state, i.e. $H_0 = 1/\sqrt{2}$. Then it can be shown that for $\varkappa \geq 1/\sqrt{2}$ an instability appears with respect to the formation of thin layers of superconducting phase

Landau's intuition

К ТЕОРИИ СВЕРХПРОВОДИМОСТИ Совместно с В. Л. ГИНЗБУРГОМ ЖЭТФ, 20, 1064, 1950

Since from the experimental data it follows that $\varkappa \ll 1$, and also for a reason indicated below the solution of equations (18) possible for another limiting case when $\varkappa \to \infty$ does not offer any intrinsic interest, we shall not discuss it.

Let us now note that for $\varkappa \geq 1/\sqrt{2}$ a peculiar instability of the normal phase of the metal occurs. Indeed, suppose the whole metal is in equilibrium, and in the normal state, i.e. $H_0 = 1/\sqrt{2}$. Then it can be shown that for $\varkappa \geq 1/\sqrt{2}$ an instability appears with respect to the formation of thin layers of superconducting phase

It has not been necessary to investigate the nature of the state which occurs when $\varkappa > \varkappa_0$ since from the experimental data, it is true somewhat preliminary and worked out on the basis of equation (22), it follows that $\varkappa \ll 1$.

Type-I superconductor

Nature 134, 286 (1934)

Type-II superconductor

Nature 135, 581 (1935)

Personality *Alexey Abrikosov*

Superconductivity I, SS 24 Vortices, and where is the critical field?

- 1947: passed Landau's "theory minimum"
- 1951: PhD on thermal diffusion in plasma
- Landau: "Be independent. Read the journals, attend the seminars, and most importantly, discuss with experimentalists"

Alexey Abrikosov 1928–2017

Alexey Abrikosov 1928–2017

- 1947: passed Landau's "theory minimum"
- 1951: PhD on thermal diffusion in plasma
- Landau: "Be independent. Read the journals, attend the seminars, and most importantly, discuss with experimentalists"
- 1952–57: Ginzburg-Landau theory for $\kappa > 1/\sqrt{2}$, type-II superconductors
- 1955: Habilitation on quantum electrodynamics

Alexey Abrikosov 1928–2017

- 1947: passed Landau's "theory minimum"
- 1951: PhD on thermal diffusion in plasma
- Landau: "Be independent. Read the journals, attend the seminars, and most importantly, discuss with experimentalists"
- 1952–57: Ginzburg-Landau theory for $\kappa > 1/\sqrt{2}$, type-II superconductors
- 1955: Habilitation on quantum electrodynamics
- 1965–1987: head of department at Landau Institute of Theoretical Physics
- 1972: Fundamentals of the Theory of Metals
- from 1991: Argonne National Lab, US
- 2003: Nobel Prize in Physics

Alexey Abrikosov 1928–2017

- 1947: passed Landau's "theory minimum"
- 1951: PhD on thermal diffusion in plasma
- Landau: "Be independent. Read the journals, attend the seminars, and most importantly, discuss with experimentalists"
- 1952–57: Ginzburg-Landau theory for $\kappa > 1/\sqrt{2}$, type-II superconductors
- 1955: Habilitation on quantum electrodynamics
- 1965–1987: head of department at Landau Institute of Theoretical Physics
- 1972: Fundamentals of the Theory of Metals
- from 1991: Argonne National Lab, US
- 2003: Nobel Prize in Physics

"I deem the applicant's theory wrong, but scientists have not reached a consensus on this problem yet, and the applicant's work contributes to developing this consensus"

recommendation letter by Abrikosov

Intermediate state vs. vortex state

Intermediate state (type-l superconductor)

Vortex state (type-II superconductor)

phys. stat. sol. 13, 471 (1972); Sci. Reports 5, 8677 (2015)

Type-II superconductor

Each Abrikosov vortex carries the flux of Φ_0

Image credit: S. Hunklinger, Festkörperphysik and Fir0002 (CC-BY-SA)

Isolated vortex

- Magnetic flux enclosed in a cylinder
- Supercurrent embraces the vortex
- $\xi \ll \lambda$, i.e., $\Psi
 eq 0$ except in the very center of the vortex

Lower and upper critical fields

Phys. Rev. Lett. 111, 157002 (2013)

Lower and upper critical fields

Gross and Marx, Festkörperphysik

Critical fields

Image source: Hyperphysics

Material / Technology

Superconductivity I, SS 24 Vortices, and where is the critical field?

Ginzburg-Landau parameter

Supraleiter	$\xi_{GL}(0)$ (nm)	$\lambda_L(0)$ (nm)	к
Al	1600	50	0.03
Cd	760	110	0.14
In	1100	65	0.06
Nb	106	85	0.8
NbTi	4	300	75
Nb ₃ Sn	2.6	65	25
NbN	5	200	40
Pb	100	40	0.4
Sn	500	50	0.1

Source: Gross and Marx, Festkörperphysik

Supercond. Sci. Technol. 19, R41 (2006)

Superconductors for high-field applications

Source: Gross and Marx, Festkörperphysik

Key materials

- Discovered in 1954 (Nb₃Sn) and 1962 (NbTi)
- (Very) difficult to fabricate

Image source: IEEE Trans. Appl. Supercond. 17, 1149 (2007)

Inner structure of the wire

Image source: C.M. Fischer, Master Thesis (University of Wisconsin-Madison)

Nb-based intermetallic superconductors

- Discovered in 1954 (Nb₃Sn) and 1962 (NbTi)
- Very difficult to fabricate
- $\bullet\,$ Constitute almost all commercial superconducting magnets: NbTi below 10 T, Nb_3Sn up to 18 20 T

Image source: IEEE Trans. Appl. Supercond. 17, 1149 (2007)

Nb-based intermetallic superconductors

- Discovered in 1954 (Nb₃Sn) and 1962 (NbTi)
- Very difficult to fabricate
- $\bullet\,$ Constitute almost all commercial superconducting magnets: NbTi below 10 T, Nb_3Sn up to 18 20 T

Image source: IEEE Trans. Appl. Supercond. 17, 1149 (2007)

Price considerations

CERN (2015)

NbTi: \$150 per kg of wire Nb₃Sn: \$1500 per kg of wire

Image credit: Charlie Sanabria (CC-BY-SA)

Price considerations

CERN (2015)

NbTi: \$150 per kg of wire Nb₃Sn: \$1500 per kg of wire

Hyper Tech Research (2020)

NbTi: \$200 per kg of wire Nb₃Sn: \$600 per kg of wire

Price considerations

CERN (2015)

NbTi: \$150 per kg of wire Nb₃Sn: \$1500 per kg of wire

Hyper Tech Research (2020)

NbTi: \$200 per kg of wire Nb₃Sn: \$600 per kg of wire

PPMS system

9 T magnet: at Uni Leipzig 14 T magnet: +\$100,000 16 T magnet: +\$200,000

Image credit: Charlie Sanabria (CC-BY-SA)