BCS and conventional superconductivity

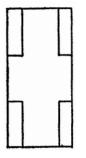
BCS coherence length, pair-breaking current

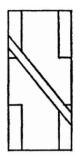
tunneling experiments

magnesium diboride (MgB₂)

by Alexander Tsirlin, Leipzig University

Lecture 11: June 20, 2024


Superconductivity I, SS 24 BCS and conventional superconductivity

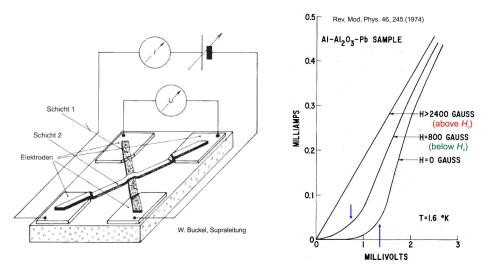


Experiment

tunneling spectroscopy

Tunneling experiments

Glass substrate with In contacts



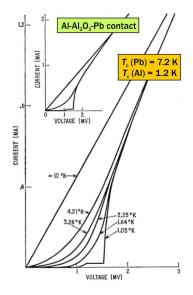
Al strip oxidized (Al₂O₃ surface layer)

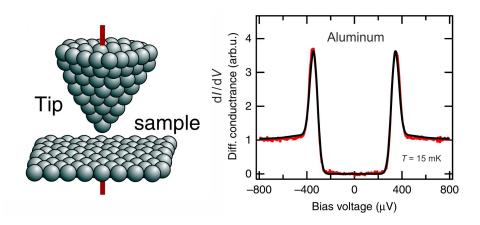
Pb strip forms the tunneling contact

Phys. Rev. 122, 1101 (1961)

Tunneling: superconductor to normal metal

Superconducting gap is extracted from the current-voltage characteristic


Superconductivity I, SS 24 BCS and conventional superconductivity


Tunneling: superconductor to superconductor

lvar Giæver born 1929

first tunneling experiments in early 1960's

STS is the best (yet local!) probe of the low-energy DOS

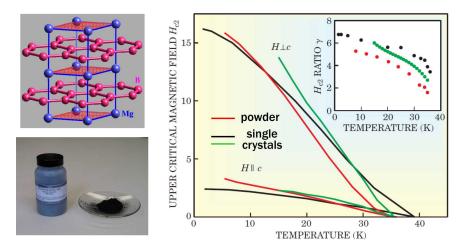
Nature Comm. 7, 13009 (2016)

Superconductors now come in more flavors than Baskin-Robbins ice-cream...

Leon Cooper, 50 years of BCS

Element		Superconducting gap: $2\Delta_0/k_BT_c$		
	T _c in Kelvin	tunnelling experiments	ultrasonic experiments	light absorption
Sn	3,72	3,5 ± 0,1 (1,15)	_	3,5
In	3,4	$3,5 \pm 0,1 (1,05)$	$3,5 \pm 0,2$	$3,9 \pm 0,3$
T1	2,39	$3,6 \pm 0,1 (0,75)$	_	_
Та	4,29	$3,5 \pm 0,1 (1,30)$	$3,5 \pm 0,1$	3,0
Nb	9,2	3,6 (2,90)	$4,0\pm0,1$	$2,8\pm0,3$
Hg	4,15	$4,6 \pm 0,1 (1,65)$	-	$4,6 \pm 0,2$
Pb	7,2	$4,3 \pm 0,05$ (2,70)		$4,4 \pm 0,1$

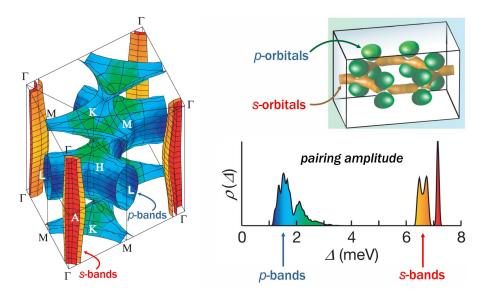
Buckel, Supraleitung


.

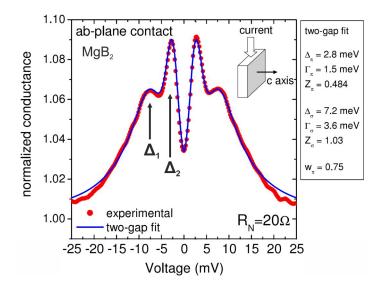
Material / Technology

magnesium diboride

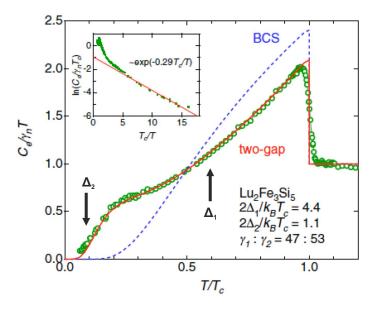
Superconductivity I, SS 24 BCS and conventional superconductivity


Genie from the bottle: MgB₂

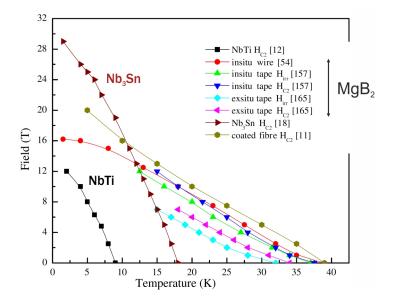
- Discovered in 2001; simple and widely available; T_c = 32 ÷ 39 K
- Strong anisotropy, moderate critical fields (can be improved by suitable processing)


Physics Today 464, 183 (2003)

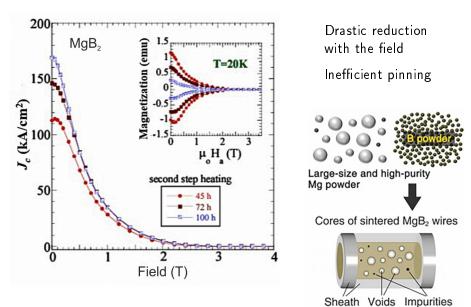
New mechanism: two-gap superconductivity


Nature 418, 758 (2002) and Physics Today 464, 183 (2003)

Two gaps in the tunneling

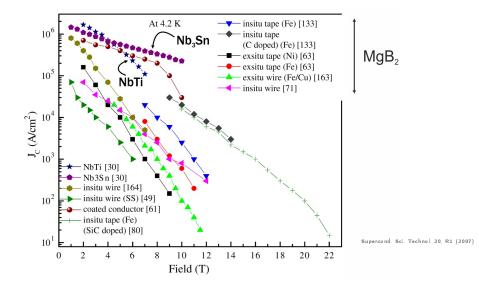

Supercond. Sci. Tech. 23, 043001 (2010)

Two gaps in the specific heat

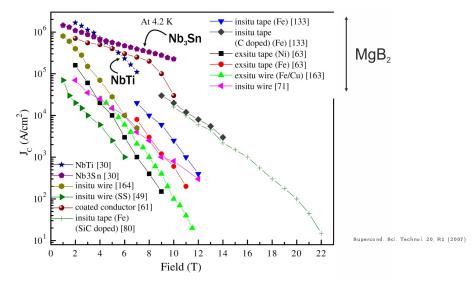


J. Phys. Conf. Series 150, 052264 (2009)

Faint prospects



Supercond. Sci. Technol. 20, R1 (2007)



Superconductivity 9, 100083 (2024), J. Phys. D 57 053001 (2024)

Faint prospects

Faint prospects

You can't use MgB₂ to build a superconducting magnet...