Correlations and Hubbard model

Mott insulator and Mott transition

by Alexander Tsirlin, Leipzig University

Lecture 18: January 13, 2025

Advanced Solid-State Physics, WS 24/25 Correlations and Hubbard model

Exam

Exam: 17.02, 9:00 (kleiner Hörsaal)

Second exam: 24.03, 9:00 (SR 218)

Exam

Exam: 17.02, 9:00 (kleiner Hörsaal)

Second exam: 24.03, 9:00 (SR 218)

Exam problems:

- questions about the key concepts example: Berry curvature and its symmetry properties
- analytical problems
 example: tight-binding model
- numerical problems
 example: calculate effective mass from the experimental data

Condensed matter: Theory should be on tap, not on top Philip Anderson (1923–2020)

Condensed matter: Theory should be on tap, not on top Philip Anderson (1923–2020)

1977 Nobel prize in physics

"for his investigations into the electronic structure of magnetic and disordered systems, which allowed for the development of electronic switching and memory devices in computers"

Correlated states: Localized shells

Image credit: WNYC New York Public Radio (CC-BY-NC)

Correlated states: Localized shells

Distance from the nucleus

Image credit: WNYC New York Public Radio (CC-BY-NC)

Correlated materials

Correlated materials

Image credits: Benjah-bmm27 and A,Ocram (CC-zero)

Advanced Solid-State Physics, WS 24/25

Two types of correlated physics

Mott-Hubbard

Image credits: A,Ocram (CC-zero), Raimond Spekking (CC-BY-SA), Materialscientist (CC-BY-SA)

Mott insulator vs. band insulator

Metal-insulator (Mott) transition

 $t,t'\sim 0.05\,{
m eV},~~U\sim 0.1\,{
m eV}$

Adv. Phys. 69, 1 (2020)

Mott transition in oxides

Phys. Rev. X 8, 031059 (2018)

Metal-insulator transition on doping

Image credit: Holger Motzkau (CC-BY-SA)

Antiferromagnetism of Mott insulators

Mott insulators are magnetically ordered because of correlations

Image credit: Bilbao Crystallographic Server

Shapes of *d*-orbitals

Spherical harmonics, $Y'_m(\theta, \varphi)$, or their combinations:

$$|3z^2 - r^2\rangle = Y_0^2$$

 $|x^2 - y^2\rangle = \frac{1}{\sqrt{2}}(Y_2^2 + Y_{-2}^2)$

Advanced Solid-State Physics, WS 24/25 Correlations and Hubbard model

. . .

Crystal-field splitting

Crystal-field splitting

Crystal-field levels are labeled by irreducible representations of the symmetry group

Colors of chromium

 $\label{eq:Ruby} Ruby $$ Cr^{3+}$ in corundum, Al_2O_3 }$

$\label{eq:cr3+} \begin{array}{l} \textit{Emerald} \\ \text{Cr}^{3+} \text{ in beryl, } \text{Be}_3\text{Al}_2\text{Si}_6\text{O}_{18} \end{array}$

Image credits: Robert M. Lavinsky and Géry PARENT (CC-BY-SA)

Correlated materials: 1977 Nobel prize in physics

Philip Anderson 1923–2020 Sir Neville Mott 1905–1996 John Van Vleck 1899–1980