From solid to quantum liquid

fractionalization

by Alexander Tsirlin, Leipzig University

Lecture 23: January 28, 2025

Advanced Solid-State Physics, WS 24/25

From solid to quantum liquid

Antiferromagnet: two sublattices

Spin waves: ferromagnet vs. antiferromagnet

J. Appl. Phys. 39, 383 (1968) and Phys. Rev. Lett. 23, 1394 (1969)

Staggered magnetization

J. Magn. Magn. Mater. 555, 169302 (2022); Phys. Rev. B 104, 094428 (2021)

Staggered magnetization

J. Magn. Magn. Mater. 555, 169302 (2022); Phys. Rev. B 104, 094428 (2021)

Magnon decay

Scattering intensity (a.u.)

Material: copper formate ($S = \frac{1}{2}$ on a square lattice) magnon breakdown near zone boundary

Nature Phys. 11, 62 (2015)

Magnon decay

 $S = \frac{1}{2}$ on a triangular lattice: large non-linear corrections and magnon breakdown

2D magnet

Spin flip creates two domain walls

Nature Phys. 9, 435 (2013)

Spin flip creates two domain walls

These walls propagate independently

Nature Phys. 9, 435 (2013)

Fractionalization: energy spectrum

Excitations of a spin chain are spinons (fermions)

