Materials 15, 3422 (2022)
R. Ariskina, M. Stiller, Chr.E. Precker, W. Böhlmann, and P.D. Esquinazi
Abstract
Granular superconductivity at high temperatures in graphite can emerge at certain two-dimensional (2D) stacking faults (SFs) between regions with twisted (around the c-axis) or untwisted crystalline regions with Bernal (ABA. . . ) and/or rhombohedral (ABCABCA. . . ) stacking order. One way to observe experimentally such 2D superconductivity is to measure the frozen magnetic flux produced by a permanent current loop that remains after removing an external magnetic field applied normal to the SFs. Magnetic force microscopy was used to localize and characterize such a permanent current path found in one natural graphite sample out of ∼50 measured graphite samples of different origins. The position of the current path drifts with time and roughly follows a logarithmic time dependence similar to the one for flux creep in type II superconductors. We demonstrate that a ≈10 nm deep scratch on the sample surface at the position of the current path causes a change in its location. A further scratch was enough to irreversibly destroy the remanent state of the sample at room temperature. Our studies clarify some of the reasons for the difficulties of finding a trapped flux in a remanent state at room temperature in graphite samples with SFs.