Investigation of the solid solution series 2(MnX)-CuInX2(X=S,Se)

Journal of Physics and Chemistry of Solids 66, 1966 (2005)
The 14th International Conference on Ternary and Multinary Compounds

S. Schorr, R. Höhne, G. Wagner, V. Riede and W. Kockelmann

Abstract
(2MnX)x(CuInX2)1−x with X=S and Se were prepared by solid state reaction from the end members α-MnS, β-MnS and CuInS2 in the range 0<x≤0.2 (≤0.6 for β-MnS) as well as MnSe and CuInSe2 in the range 0<x≤0.1. Mixed crystals with 0≤x≤0.1 crystallize in the tetragonal chalcopyrite type structure, (2α-MnS)x(CuInS2)1−x samples with 0.1<x≤0.2 and (2β-MnS)x(CuInS2)1−x samples up to x=0.6 consist of two phases, occuring as tetragonal domains (xnot, vert, similar0.1 for X=S) within a cubic matrix with zinc-blende type structure (xnot, vert, similar0.4 for X=S), indicating a miscibility gap. For tetragonal single phase samples the band gap energy, the lattice constants and the anion parameter have been determined. The first and the latter ones show a different composition dependent behaviour caused by the modification of the MnS (α-MnS with NaCl type structure, β-MnS with zinc-blende type structure) used during the synthesis. Additionally a CuMnxIn1−xS2 powder sample, in which Mn substitutes the MIII site, was investigated. The SQUID measurements revealed a well-distinct magnetic transition between 15 and 16 K as well as ferromagnetic-like hysteresis loops pronounced for temperatures below the transition temperature. Below this temperature a clear splitting between the zero field cooling (ZFC) and the field cooling (FC) curves indicate to the existence of a long-range magnetic ordering phenomenon. This behaviour was not found in the other samples were Mn substitutes both sites MI as well as MIII.